Particles and unparticles

Those of us of a certain age will remember an old advertising campaign for 7-Up that was touted as the “uncola.”  Today’s article talks about a clever, but highly speculative, idea called the “unparticle.” Photo: Grant Hutchinson

Those of us of a certain age will remember an old advertising campaign for 7-Up that was touted as the “uncola.” Today’s article talks about a clever, but highly speculative, idea called the “unparticle.” Photo: Grant Hutchinson

The LHC accelerator is in the business of discovering new things, from particles that are expected (like the Higgs boson) to particles that are sort of expected (like the panoply of particles predicted by supersymmetric models) to particles from something entirely unexpected (like the what-the-heck-is-that moment that changes our theories forever).

The commonality of all of these potential discoveries is that they include particles. All particles have a fixed mass. So all electrons in the universe have the same mass, as do all muons, pions, protons or any other subatomic particle you can name.

(This is true no matter how fast the particles are moving, and it’s worth emphasizing this point, as it may not jibe with some readers’ understanding of what happens when a particle’s velocity approaches light speed. You may have heard that the mass of a particle changes as velocity increases. We teach this to people first encountering relativity, but the statement is an illustrative one. What actually changes is the particle’s inertia, which is equivalent to mass at low velocities. You can read more about this in a previous column. So, for a particle, no matter what energy and momentum it has, it must also have a single and specific mass.)

However, in 2007 scientist Howard Georgi had an idea: Suppose there was a kind of particle that had a mass that wasn’t constant. If you doubled the particle’s energy and momentum, you would double its mass. If you halved the energy, you’d halve the mass. Such a particle wouldn’t have a well-defined mass at all. This kind of particle is called an unparticle.

These physicists contributed to this analysis.

These physicists contributed to this analysis.

Unparticles are governed by fractal mathematics and are highly speculative. In fact, there is no hint in the data that they must exist, nor is there a compelling theoretical reason why they should. On the other hand, they are possible, and given that we don’t know what theory will supplant the Standard Model, we should be open to all sorts of improbable ideas. We do know that unparticles, if they exist, must interact via known forces only weakly.

So, of course, CMS went looking for them. In a recent analysis that looked for both unparticles and dark matter, scientists studied events in which a Z boson was created, as well as undetected energy that would be the signal of either a dark matter particle or unparticle escaping.

Sadly, no evidence was observed for either phenomenon. Truthfully, it would have been shocking if unparticles had been observed, but the fact that LHC experiments are looking for even such bizarre possibilities highlights that the scientific community is exploring all viable ideas, hoping to find something that gives us a huge advance in our understanding of the nature of reality.