Precise measure of matter preference

Most matter and antimatter annihilated each other in the very early universe, but a small excess of matter remained to form the universe we live in today. To attempt to understand this imbalance, scientists measure particle decay processes that show a difference between matter and antimatter.

We live in a universe filled with matter, with no detectable pockets of antimatter, but don’t fully understand why. In the very early universe, matter and antimatter were created in equal abundance. As the universe cooled, the matter and antimatter annihilated each other, but left behind the small excess of matter that accounts for all of the stars, planets and galaxies in the universe today. This difference is thought to result from the slightly different ways the particles and antiparticles decayed. However, the decay rate difference predicted by the Standard Model is not nearly enough to account for the amount of matter in the universe. By precisely measuring processes that show a difference between matter and antimatter, physicists attempt to understand what caused the imbalance that led to the universe today.

The Standard Model predicts a small difference in the decay rates for the matter and antimatter versions of certain processes. Measuring a difference greater than expected could indicate physics beyond the Standard Model that could help explain the abundance of matter in the universe. Many asymmetric decays involve mesons, or the combination of a quark and an antiquark. A recent result at DZero studied this asymmetry in the decay of a charged B meson, made of a bottom quark and an up quark, into a J/Ψ meson and a charged K meson, which involves the bottom quark decaying into a strange quark and two charm quarks. To reduce the uncertainty on the measurement, the analysis exploited the fact that the magnetic polarities of magnets in the DZero detector were systematically flipped during the decade of data collecting for Run II. Each possible source of bias in the measurement of asymmetry between matter and antimatter was carefully studied and accounted for.

The final result is the world’s most precise measurement of matter-antimatter asymmetry in charged B meson decays to a J/Ψ meson and a charged K meson. The measured asymmetry is consistent with the Standard Model. While it does not indicate the presence of new physics and explain the matter-antimatter asymmetry in the universe, it is an important step in exploring this mystery.

Mike Cooke

Iain Bertram (Lancaster University, United Kingdom) led this analysis effort.
The “deans” of the University of DZero organize monthly academic-style lectures for the DZero collaboration, targeted towards young physicists in particular, on a broad range of topics of interest to modern particle physicists.