The final word on Z’s and jets from CDF

Inclusive jet pT differential cross sections for Z + one or more jet events. The measured differential cross section (black dots) is compared to the LOOPSIM + MCFM prediction (open circle). On the right many other theoretical predictions are shown.

Our understanding of the strong force, called QCD (quantum chromodynamics) is very advanced. This theory describes the interactions between some of nature’s fundamental building blocks, quarks and gluons.

The highly energetic quarks and gluons released in the Tevatron proton-antiproton collisions produce collimated jets of particles, which can be detected by the experiments. These jets were produced in association with particles known as Z bosons.

You may know the Z as one of the carriers of the electroweak force, but here our focus is on their production in association with jets. The behavior of both the Z and the jets is predicted by the strong force.

Scientists at the Tevatron experiments have made many measurements of the Z particle, which decays into a pair of leptons (electrons or muons) and jets. Our results correspond to the full Tevatron Run II data set (9.6 inverse femtobarns). In this experiment we are concerned with comparing measured probabilities with theoretical predictions. This is complicated because we must understand how well the detector records the decay particles’ tracks and energies for the process of Z boson and jet production.

The inclusive Z-plus-jets decay probabilities are measured for one, two, three and four jets. The results shown are from combining the decay modes in which the Z decays into an electron pair and in which it decays into a muon pair. This is the first CDF measurement of probabilities for decays into a Z particle and three or more jets.

The samples are very clean, and for the cases in which they include one or more jets, they contain only about 1.5 percent background. In the upper figure you can see results for the transverse momentum of the leading jet’s differential reaction probability for Z plus one or more jet events.

This result is of great interest to many theoretical physicists as can be seen by the large number of predictions. The agreements are good as can be expected, as theorists have looked at earlier results from CDF and DZero. The most accurate predictions are those of a simulation program called LOOPSIM + MCFM. This is an important Tevatron legacy measurement.

The results show beautiful agreement between theory and experiment and are important for understanding the association of Z and jets in searches for non-Standard Model physics.

edited by Andy Beretvas

Learn more

Stefano Camarda (left) and Veronica Sorin both from Institut de Fisica d’Altes Energies, Barcelona, Spain, are the primary analysts for this result.