New map of universe’s dark matter

New result rivals precision of cosmic microwave background measurements, supports view that dark matter and dark energy make up most of the cosmos

 

Map of dark matter made from gravitational lensing measurements of 26 million galaxies in the Dark Energy Survey. The map covers about 1/30th of the entire sky and spans several billion light-years in extent. Red regions have more dark matter than average, blue regions less dark matter. Image: Chihway Chang of the Kavli Institute for Cosmological Physics at the University of Chicago and the DES collaboration

Imagine planting a single seed and, with great precision, being able to predict the exact height of the tree that grows from it. Now imagine traveling to the future and snapping photographic proof that you were right.

If you think of the seed as the early universe, and the tree as the universe the way it looks now, you have an idea of what the Dark Energy Survey (DES) collaboration has just done. In a presentation today at the American Physical Society Division of Particles and Fields meeting at the U.S. Department of Energy’s (DOE) Fermi National Accelerator Laboratory, DES scientists will unveil the most accurate measurement ever made of the present large-scale structure of the universe.

These measurements of the amount and “clumpiness” (or distribution) of dark matter in the present-day cosmos were made with a precision that, for the first time, rivals that of inferences from the early universe by the European Space Agency’s orbiting Planck observatory. The new DES result (the tree, in the above metaphor) is close to “forecasts” made from the Planck measurements of the distant past (the seed), allowing scientists to understand more about the ways the universe has evolved over 14 billion years.

“This result is beyond exciting,” said Scott Dodelson of Fermilab, one of the lead scientists on this result. “For the first time, we’re able to see the current structure of the universe with the same clarity that we can see its infancy, and we can follow the threads from one to the other, confirming many predictions along the way.”

Composite picture of stars over the Cerro Tololo Inter-American Observatory in Chile. Photo: Reidar Hahn

Most notably, this result supports the theory that 26 percent of the universe is in the form of mysterious dark matter and that space is filled with an also-unseen dark energy, which is causing the accelerating expansion of the universe and makes up 70 percent.

Paradoxically, it is easier to measure the large-scale clumpiness of the universe in the distant past than it is to measure it today. In the first 400,000 years following the Big Bang, the universe was filled with a glowing gas, the light from which survives to this day. Planck’s map of this cosmic microwave background radiation gives us a snapshot of the universe at that very early time. Since then, the gravity of dark matter has pulled mass together and made the universe clumpier over time. But dark energy has been fighting back, pushing matter apart. Using the Planck map as a start, cosmologists can calculate precisely how this battle plays out over 14 billion years.

“The DES measurements, when compared with the Planck map, support the simplest version of the dark matter/dark energy theory,” said Joe Zuntz, of the University of Edinburgh, who worked on the analysis. “The moment we realized that our measurement matched the Planck result within 7  percent was thrilling for the entire collaboration.”

The primary instrument for DES is the 570-megapixel Dark Energy Camera, one of the most powerful in existence, able to capture digital images of light from galaxies eight billion light-years from Earth. The camera was built and tested at Fermilab, the lead laboratory on the Dark Energy Survey, and is mounted on the National Science Foundation’s 4-meter Blanco telescope, part of the Cerro Tololo Inter-American Observatory in Chile, a division of the National Optical Astronomy Observatory. The DES data are processed at the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign.

Scientists on DES are using the camera to map an eighth of the sky in unprecedented detail over five years. The fifth year of observation will begin in August. The new results released today draw from data collected only during the survey’s first year, which covers 1/30th of the sky.

“It is amazing that the team has managed to achieve such precision from only the first year of their survey,” said National Science Foundation Program Director Nigel Sharp. “Now that their analysis techniques are developed and tested, we look forward with eager anticipation to breakthrough results as the survey continues.”

DES scientists used two methods to measure dark matter. First, they created maps of galaxy positions as tracers, and second, they precisely measured the shapes of 26 million galaxies to directly map the patterns of dark matter over billions of light-years, using a technique called gravitational lensing.

This image of the NGC 1398 galaxy was taken with the Dark Energy Camera. This galaxy lives in the Fornax cluster, roughly 65 million light-years from Earth. It is 135,000 light-years in diameter, just slightly larger than our own Milky Way galaxy, and contains more than a billion stars. Image: Dark Energy Survey

To make these ultraprecise measurements, the DES team developed new ways to detect the tiny lensing distortions of galaxy images, an effect not even visible to the eye, enabling revolutionary advances in understanding these cosmic signals. In the process, they created the largest guide to spotting dark matter in the cosmos ever drawn (see image). The new dark matter map is 10 times the size of the one DES released in 2015 and will eventually be three times larger than it is now.

“It’s an enormous team effort and the culmination of years of focused work,” said Erin Sheldon, a physicist at the DOE’s Brookhaven National Laboratory, who co-developed the new method for detecting lensing distortions.

These results and others from the first year of the Dark Energy Survey will be released today online and announced during a talk by Daniel Gruen, NASA Einstein fellow at the Kavli Institute for Particle Astrophysics and Cosmology at DOE’s SLAC National Accelerator Laboratory, at 5 p.m. Central time. The talk is part of the APS Division of Particles and Fields meeting at Fermilab and will be streamed live.

The results will also be presented by Kavli fellow Elisabeth Krause of the Kavli Insitute for Particle Astrophysics and Cosmology at SLAC at the TeV Particle Astrophysics Conference in Columbus, Ohio, on Aug. 9; and by Michael Troxel, postdoctoral fellow at the Center for Cosmology and AstroParticle Physics at Ohio State University, at the International Symposium on Lepton Photon Interactions at High Energies in Guanzhou, China, on Aug. 10. All three of these speakers are coordinators of DES science working groups and made key contributions to the analysis.

“The Dark Energy Survey has already delivered some remarkable discoveries and measurements, and they have barely scratched the surface of their data,” said Fermilab Director Nigel Lockyer. “Today’s world-leading results point forward to the great strides DES will make toward understanding dark energy in the coming years.”

The Dark Energy Survey is a collaboration of more than 400 scientists from 26 institutions in seven countries. Funding for the DES Projects has been provided by the U.S. Department of Energy Office of Science, U.S. National Science Foundation, Ministry of Science and Education of Spain, Science and Technology Facilities Council of the United Kingdom, Higher Education Funding Council for England, ETH Zurich for Switzerland, National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, Kavli Institute of Cosmological Physics at the University of Chicago, Center for Cosmology and AstroParticle Physics at Ohio State University, Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico and Ministério da Ciência e Tecnologia, Deutsche Forschungsgemeinschaft, and the collaborating institutions in the Dark Energy Survey, the list of which can be found at www.darkenergysurvey.org/collaboration.

Fermilab is America’s premier national laboratory for particle physics and accelerator research. A U.S. Department of Energy Office of Science laboratory, Fermilab is located near Chicago, Illinois, and operated under contract by the Fermi Research Alliance LLC. Visit Fermilab’s website at www.fnal.gov and follow us on Twitter at @Fermilab.

The DOE Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

It was in August 1972 that Fermilab published its first experimental results. What else happened in the waning summer days?

The three buildings in the foreground are part of the Antiproton Source.

Aug. 16, 1983: Antiproton Source groundbreaking
In 1981, the lab began work on the design for the Antiproton Source, a key part of the planned proton-antiproton collider aspect of the Tevatron. The lab broke ground on the Antiproton Source on Aug. 16, 1983. It would be completed in 1985, and the first antiprotons would circulate in the Tevatron on Oct. 12, 1985.

This is one of the earliest photos taken with the 30-inch bubble chamber. This image was captured on June 12, 1972.

Aug. 21, 1972: First published experimental results
E-141, the Study of pp Interactions in the 30-inch Hydrogen Bubble Chamber, was the first experiment at the lab to have its results published. The experimenters submitted their paper, titled “Charged Particle Multiplicity Distribution from 200 GeV pp Interactions,” to Physical Review Letters on July 18, 1972, and it appeared in print on August 21.

This event display depicts a CDF top quark event from Tevatron Run I.

Aug. 31, 1992: Tevatron Collider Run 1 begins
Tevatron Collider Run I, which began on Aug. 31, 1992, was the first Tevatron run with two collider detectors. It ended on Feb. 20, 1996.

The ICARUS detector pulls in to the Fermilab site on July 26. Photo: Reidar Hahn

After six weeks’ passage across the ocean, up rivers and on the road, the newest member of Fermilab’s family of neutrino detectors has arrived.

The 65-foot-long ICARUS particle detector pulled into Fermilab aboard two semi-trucks on July 26 to an excited gathering who welcomed the detector, which has spent the last three years at the European laboratory CERN, to its new home.

“We’ve waited a long time for ICARUS to get here, so it’s thrilling to finally see this giant, exquisite detector at Fermilab,” said scientist Peter Wilson, who leads the Fermilab Short-Baseline Neutrino Program. “We’re looking forward to getting it online and operational.”

The ICARUS detector will be instrumental in helping an international team of scientists at the Department of Energy’s Fermilab get a bead on the slippery neutrino, the most ubiquitous yet least understood matter particle in the universe. The neutrino passes through outer space, metal, you and me without leaving a trace. Scientists have observed three types of neutrino. As it travels, it continually slips in and out of its various identities.

Previous neutrino experiments have seen hints of yet another type, and ICARUS will hunt for evidence of this unconfirmed fourth. If found, the fourth neutrino could provide a new way of modeling dark matter, another of nature’s mysterious phenomena, one that makes up a whopping 23 percent of the universe. (Ordinary matter makes up only 4 percent of the universe.) A fourth neutrino would also change scientists’ fundamental picture of how the universe works.

Fermilab is ICARUS detector’s second home. From 2010 to 2014, the Italian National Institute for Nuclear Physics’ Gran Sasso laboratory built and operated ICARUS to study neutrinos using a neutrino beam sent straight through the Earth’s mantle from CERN in Switzerland, about 600 miles away. ICARUS’ lead scientist, Nobel laureate Carlo Rubbia, innovated the use of liquid argon to detect neutrinos.

ICARUS is the largest liquid-argon neutrino detector in the world. Its great mass — it will be filled with 760 tons of liquid argon — gives neutrinos, always reluctant to interact with anything, plenty of opportunities to come into contact with an argon nucleus. The charged particles resulting from the interaction create tracks that scientists can study to learn more about the neutrino that triggered them.

In 2014, after the ICARUS experiment wrapped up in Italy, its detector was delivered to CERN. Since then, CERN and INFN have been improving the detector, refurbishing it for Fermilab’s mission. CERN completed the project in May and sent ICARUS on its trans-Atlantic voyage in June.

“This is really exciting — to have the world’s original, large-scale liquid-argon neutrino detector at Fermilab,” said Cat James, senior scientist on Fermilab’s Short-Baseline Neutrino Program.

Fermilab’s Short-Baseline Neutrino Program involves three neutrino detectors. ICARUS is one, and now that it has safely landed at Fermilab, it will be installed as part of the program. Another detector, MicroBooNE, has been in operation since 2015. The construction of the third, called the Short-Baseline Near Detector, is in progress. All three use liquid argon to detect the elusive neutrino.

The development and use of liquid-argon technology for the three detectors will be further wielded for Fermilab’s new flagship experiment, the Deep Underground Neutrino Experiment. Fermilab and South Dakota’s Sanford Underground Research Laboratory broke ground on the new experiment on July 21.

“We’re really looking forward to working with our international partners as we get ICARUS ready for first beam,” James said.