neutrino

From March 6, 2020: Durante a 5ª Comista, os dois países adotaram um Plano de Trabalho em Ciência e Tecnologia para o período de 2020 a 2023, que estabelece as prioridades comuns descritas acima. Também foram firmados acordos de cooperação na área de cooperação científica em Física de Partículas de Alta Energia entre o Fermilab (Laboratório de pesquisa científica do Departamento de Energia dos EUA) e a FAPESP e outro acordo na mesma área entre o Fermilab e a UNICAMP.

From Brazilian Space, March 10, 2020: Durante a 5ª Comista, os dois países adotaram um Plano de Trabalho em Ciência e Tecnologia para o período de 2020 a 2023. Também foram firmados acordos de cooperação na área de cooperação científica em Física de Partículas de Alta Energia entre o Fermilab e a Fundação de Amparo à Pesquisa do Estado de São Paulo e outro acordo na mesma área entre o Fermilab e a Universidade de Campinas.

The groundbreaking ANNIE experiment at Fermilab has seen its first neutrino events. This milestone heralds the start of an ambitious program in neutrino physics and detector technology development. It is also a cause for celebration by the international ANNIE collaboration, composed of groups from Germany, the United Kingdom and the United States.

NuSTEC focuses on neutrino-nucleus interactions and facilitates conversation between experimental and theoretical physicists in the nuclear and particle communities who confront the challenges of this area of physics. By bringing together experts in different areas, NuSTEC schools help educate new members of the community, while NuSTEC workshops and publications highlight the community’s specific concerns.

From News at South Dakota State, Feb. 25, 2020: Two South Dakota State University professors are part of an international team of scientists and engineers working to uncover details about how the universe was formed. Stephen Gent and Greg Michna are using SDSU’s high-performance computing cluster to predict how argon circulates within the particle detectors to be constructed one mile beneath the earth’s surface. The detectors are for Fermilab’s Long-Baseline Neutrino Facility/Deep Underground Neutrino Experiment, which will be installed in the Sanford Underground Research Facility in Lead, South Dakota.

This assembly and transport frame is patiently awaiting completion in the DZero Assembly Building. When completed, it will enable the support and transport of the SBND detector to its final destination, the Short-Baseline Neutrino Near Detector hall, 110 meters from the Booster Neutrino Beam target. SBND is one of the three particle detectors that make up the Short-Baseline Neutrino program at Fermilab. A 4-by-4-by-5 meter detector, it will consist in a tank filled with liquid argon and a series of anode plane assemblies. detector, detector technology, SBND, Short-Baseline Near Detector, Short-Baseline Neutrino program, SBN

This assembly and transport frame is patiently awaiting completion in the DZero Assembly Building. When completed, it will enable the support and transport of the SBND detector to its final destination, the Short-Baseline Neutrino Near Detector hall, 110 meters from the Booster Neutrino Beam target. SBND is one of the three particle detectors that make up the Short-Baseline Neutrino program at Fermilab. A 4-by-4-by-5 meter detector, it will consist in a tank filled with liquid argon and a series of anode plane assemblies.