neutrino

The MINOS+ collaboration at Fermilab collected data with a medium-energy neutrino beam from September 2013 to June 2016. The collaboration has exploited the data to set more stringent boundaries on the possibility of sterile neutrinos mixing with muon neutrinos.

On Feb. 26, a team on Fermilab’s MINERvA neutrino experiment gathered around a computer screen to officially conclude its data acquisition. Even with the data collection over, the work marches on. MINERvA now turns its attention to analyzing the data it has collected over the past nine years of its run.

Neutrinos are notorious for not interacting with anything, and yet scientists are able to make beams of neutrinos and point them in very specific directions, hitting targets many hundreds of miles away. In this 5-minute video, Fermilab scientist Don Lincoln explains the simple and clever technique researchers use to make this happen.

A supernova's shockwave ejects the outer layers of the star in a catastrophic blast that can briefly shine more brightly than entire galaxies. Image: NASA

Particle detectors recorded neutrinos from supernova SN1987A hours before telescopes saw the first light. Thirty years later, scientists around the world are eager to detect neutrinos from another one. The international Fermilab-hosted Deep Underground Neutrino Experiment will be looking for them. These neutrinos can tell us more about supernovae themselves and may hint at new physics that could upend the Standard Model of particle physics.

Meet Anne Schukraft, a neutrino scientist at Fermilab. Schukraft is a member of the Short-Baseline Near Detector experiment, which will investigate ghostly particles called neutrinos. SBND will also help the lab prepare for the international Deep Underground Neutrino Experiment, hosted by Fermilab. In her spare time, Schukraft likes to swim and cycle. She appreciates Fermilab’s collaborative atmosphere and believes it creates a positive environment for current and future generations of scientists.

From NPR’s Here & Now, March 19, 2019: Fermilab is a global center for research into a tiny particle that could help answer some of the biggest questions in physics: the neutrino. Neutrinos have no electrical charge and almost no mass, but they’re everywhere. Fermilab Director Nigel Lockyer and Fermilab Deputy Chief Research Officer Bonnie Fleming talk about the Deep Underground Neutrino Experiment, visit the NOvA experiment and discuss the benefits of fundamental research.

In this two-minute video, learn how scientists and engineers at universities and laboratories are working hand-in-hand with companies to design electronics, build hardware and develop computer programs for the Long-Baseline Neutrino Facility and the international Deep Underground Neutrino Experiment, hosted by Fermilab.

From Discover, March 12, 2019: Fermilab, along with the Sanford Underground Research Facility in South Dakota, is starting a new project called the Deep Underground Neutrino Experiment, or DUNE. The goal is to track and study shadowy neutrinos like never before. Fermilab scientists Deborah Harris and Angela Fava discuss the experiment.