neutrino

From CERN Courier, July 7, 2020: A new generation of accelerator and reactor experiments is opening an era of high-precision neutrino measurements to tackle questions such as leptonic CP violation, the mass hierarchy and the possibility of a fourth “sterile” neutrino. These include the international Deep Underground Neutrino Experiment, hosted by Fermilab, and Fermilab’s NOvA and Short-Baseline Neutrino programs.

From CERN Courier, July 7, 2020: Fermilab scientist Boris Kayser Texplains how neutrino physicists are now closing in on a crucial piece of evidence in a most convoluted detective story: the unknown origin of the matter–antimatter asymmetry observed in the universe.

From Department of Energy, July 6, 2020: DOE announces $132 million in funding for 64 university research awards on a range of topics in high-energy physics to advance knowledge of how the universe works at its most fundamental level. Projects include experimental work on neutrinos at Fermilab, the search for dark matter, studies of the nature of dark energy and the expansion of the universe with the Dark Energy Spectroscopic Instrument and and investigation of the Higgs boson from data collected at the Large Hadron Collider at CERN in Switzerland.

The PIP-II project at Fermilab includes the construction of a 215-meter-long particle accelerator that will accelerate particles to 84% of the speed of light. Research institutions in France, India, Italy, Poland, the UK and the United States are building major components of the new machine. The new particle accelerator will enable Fermilab to generate an unprecedented stream of neutrinos — subtle, subatomic particles that could hold the key to understanding the universe’s evolution.

From Scientific American, July 2020: Evidence for the existence of a sterile neutrino is compelling, but the idea that certain experiments might be detecting a fourth neutrino remains controversial. Projects around the world seek to settle the matter, including Fermilab’s Short-Baseline Neutrino program.

Construction workers have carried out the first underground blasting for the Long-Baseline Neutrino Facility, which will provide the space, infrastructure and particle beam for the international Deep Underground Neutrino Experiment. This prep work paves the way for removing more than 800,000 tons of rock to make space for the gigantic DUNE detector a mile underground.

Of all of the particles and forces of the Standard Model, neutrinos remain the mysterious. Researchers have not even been able to measure their mass. In episode 12 of Subatomic Stories, Fermilab scientist Don Lincoln tells us what we know about the neutrino’s mass.

The Department of Energy’s Office of Science has selected three Fermilab scientists to receive the 2020 DOE Early Career Research Award, now in its 11th year. The prestigious award is designed to bolster the nation’s scientific workforce by providing support to exceptional researchers during the crucial early years, when many scientists do their most formative work.

In this 5-minute video, Nobel laureate Carlo Rubbia explains why mysterious particles called neutrinos could be the key to understanding the nature of the universe. He talks about the search for a fourth type of neutrino and why the universe would not exist without neutrinos. He describes how scientists aim to unveil the secrets of the neutrino with the ICARUS and DUNE neutrino experiments, hosted by Fermilab. He recalls why early in his career he chose liquid argon as his material of choice to collect information about neutrino interactions with matter.

The biggest conference in neutrino physics kicks off on June 22, with two weeks of talks dedicated to one intriguing particle.