In the news

From Back Reaction, June 13, 2019: The so-called muon g-2 anomaly is a tension between experimental measurement and theoretical prediction. The most recent experimental data comes from a 2006 experiment at Brookhaven National Lab. A new experiment is now following up on the 2006 result: The Muon g-2 experiment at Fermilab.

From The Beacon-News, June 9, 2019: A recent Sunday afternoon in Batavia gave parents and children the chance to experience animal and plant life as the Fermilab held its 11th annual Family Outdoor Fair. The event included more than a dozen outdoor activities, ranging from viewing the herd of bison that live on the property to scooping up insect and pond creatures and invertebrates with nets.

From Physics Today, June 1, 2019: Fermilab scientist Aaron Chou is an author on this article on how microwave cavity experiments make a quantum leap in the search for the dark matter of the universe. The experimental hunt for a dark matter candidate called the axion has been going on for decades, and today, a number of experiments are putting the squeeze on this hypothesized particle.

From Live Science, June 4, 2019: Fermilab scientist Don Lincoln discusses why it could take millennia to find a theory of everything. It would answer all questions, leaving nothing unanswered. Why is the sky blue? Covered. Why does gravity exist? That’s covered, too. Stated in a more scientific way, a theory of everything would ideally explain all phenomena with a single theory, a single building block and a single force.

From Exascale Computing Project, May 28, 2019: Fermilab scientist Andreas Kronfeld is featured in this piece on the Excascale Computing Project, quantum chromodynamics and lattice QCD. Kronfeld, the principal investigator of ECP’s LatticeQCD project, explains how exascale computing will be essential to extending the work of precision calculations in particle physics to nuclear physics. The calculations are central for interpreting all experiments in particle physics and nuclear physics.

From Seeker, May 30, 2019: The LHC is the world’s largest particle collider, but has it hit its limit? This 13-minute video discusses how an international community of physicists are calling for a new CERN discovery machine that can reach even higher collision energies and potentially unlock the biggest mysteries of our universe.

From CERN, May 24, 2019: The CMS collaboration used a large proton–proton collision dataset, collected during the Large Hadron Collider’s second run, to search for instances in which the Higgs boson might transform, or “decay”, into a photon and a massless dark photon.