Press release

Department of Energy awards Fermilab more than $10 million for quantum science

The Department of Energy's QuantISED grants will support a number of initiatives by Fermilab scientists and their collaborators focusing on quantum computing, sensors and communication. Photo: Reidar Hahn

The Department of Energy’s QuantISED grants will support a number of initiatives by Fermilab scientists and their collaborators focusing on quantum computing, sensors and communication. Photo: Reidar Hahn

The U.S. Department of Energy announced today that it has awarded scientists at its Fermi National Accelerator Laboratory more than $10 million to spur research that could revolutionize not only our understanding of nature, but also the very way we investigate it.

Quantum science is a cutting-edge field of research made possible through the unique effects of quantum physics. The best known examples are quantum computing, quantum sensors and quantum teleportation, all of which Fermilab researchers will be working on in the coming years. This work – and the technology that enables it – is beyond complex, but Fermilab’s scientists and engineers, in partnership with other institutions and industry, have discovered new ways to make use of quantum effects to understand the universe.

“Scientists have understood the practical potential of quantum physics for decades, but only recently has the technology advanced to the point that we could tap into it,” said Fermilab Chief Research Officer and Deputy Director Joe Lykken. “Quantum physics has been Fermilab’s bread and butter for a half-century. With that accumulation of expertise and the technological innovation that comes with it, there’s hardly a place better positioned to explore — as a focused, dedicated program — the ways we can take full advantage of nature’s quantum behavior.”

As part of a number of grants to national laboratories and universities through its Quantum Information Science-Enabled Discovery (QuantISED) program, DOE’s funding to Fermilab scientists cover five initiatives (listed below) and will be distributed over two years. It also funds Fermilab’s participation in three further initiatives led by other institutions.

“One of the most exciting aspects of these initiatives is the way that quantum science and particle physics will advance each other. We’re pushing at the bounds of both fields,” said University of Washington graduate student Natalie Klco, who is participating in one of the funded programs. “It’s exciting to be working at a new frontier in particle physics.”

The quantum science funding announcement follows on the heels of a first-of-its-kind quantum workshop held earlier this month at Fermilab. With participants from academia and industry, it featured Google’s first quantum software tutorial in a public setting. The hands-on nature of the workshop and the face-to-face interaction among researchers from tech companies, national laboratories and universities made it an incubator for new ideas, discussions and problem-solving in quantum computing.

Fermilab is also preparing to participate in the Chicago Quantum Exchange Summit, to be held at the University of Chicago on Nov. 8 and 9. Fermilab, the U.S. Department of Energy’s Argonne National Laboratory and the University of Chicago form the core of CQE, a partnership that will facilitate the exploration of quantum information and the development of new applications with the potential to dramatically improve technology for communication, computing and sensing.

The summit will include representatives from the technical and academic sector. It will also serve as a testament to both academia’s and industry’s serious, burgeoning interest in quantum science.

“As we refer to it now, quantum science is a young field. But Fermilab is building on a 50-year foundation of world-leading quantum physics research and high-performance computing,” said Fermilab Scientific Computing Division Head Panagiotis Spentzouris. “These awards give us a way to maximize all the potential we have here. Not just for our field, but for research everywhere.”


The Fermilab-led initiatives funded through DOE’s QuantISED grants are:

1. A breakthrough technology to spot potential dark matter particles called axions
Lead principal investigator: Aaron Chou

Scientists have so far come up empty in the search for dark matter, the mysterious and as-of-yet undetectable substance that makes up a quarter of our universe. One theory suggests that dark matter might be made of exotic particles called axions. Fermilab researchers are part of a team using superconducting qubits – basic circuit elements of quantum computers that are able to detect a single photon of light – that will enable further experiments searching for axion particles.

Partner institutions: National Institute of Standards and Technology, University of Chicago, University of Colorado, Yale University

 

2. Particle accelerator technology to enhance qubit performance and to search for dark photons
Lead principal investigator: Alexander Romanenko

Fermilab scientists are using ultraefficient superconducting radio-frequency resonators – one of the core technologies for advancing particle accelerators – to significantly increase a quantity known as coherence time. Coherence time is how long a superposition of quantum states survives before it collapses into a single state. The longer the coherence time, the more is available for a quantum system to perform operations. Researchers are working to increase the resonators’ ability to retain energy — characterized by its quality factor — and thus the achievable coherence times. One of the main goals of this program is to demonstrate qubits with ultrahigh quality factors and long coherence times, ultimately putting a number of them together into a multiqubit, “quantum computer”-type system. The same technology will be used for experiments aimed at searching for dark photons, a particular kind of dark matter particle.

Partner institutions: National Institute of Standards and Technology, University of Wisconsin – Madison

 

3. Using quantum information science to aid particle physics theory work
Lead principal investigator: Marcela Carena

Researchers are using simulated quantum computers to enable computations for particle physics theory, integrating them into existing computing infrastructure to make complex and difficult calculations easier and faster. These simulations are opening avenues for physicists to address a whole new class of physics problems that were previously out of reach with classical computers.

Partner institutions: Caltech, University of Chicago, University of Washington

 

4. Quantum computers for machine learning and optimization
Lead principal investigator: Gabriel Perdue

Machine learning is the science of teaching computers to solve problems and fill in blanks on their own. Quantum computers are the next step in machine learning and can help make connections between pieces of information and learn how strong those connections should be. Classical computers have made great strides in this field, but quantum computers will allow scientists to build more sophisticated and powerful models of physical reality.

Partner institution: Oak Ridge National Laboratory

 

5. A new single-photon sensor for quantum imaging
Lead principal investigator: Juan Estrada

Scientists have developed a next-generation version of the charge-coupled device, or CCD, that’s in your home camera. This sensitive new technology, the skipper CCD, has the potential to exploit the quantum nature of light to capture images of objects with exceptional resolution. Thanks to the technology’s heightened sensitivity, the skipper CCD could image objects one photon at a time, increasing the clarity of the signal in quantum imaging experiments. Scientists are designing a skipper CCD optimized for such an application. They’re also exploring the quantum entanglement of photons as a tool to look for dark photons, a hypothetical particle related to dark matter.

Partner institutions: Lawrence Berkeley National Laboratory, Caltech


Fermilab has also been funded to participate in three initiatives led by other institutions:

1. Quantum communication channels for fundamental physics – led by Caltech
Lead principal investigator: Maria Spiropulu

Researchers have devised a way to use a phenomenon called quantum entanglement to send information over long distances. The first step toward that goal is called the Fermilab Quantum NETwork (FQNET) Teleportation Experiment, which will use a quantum network using commercial optical fibers to “teleport” information across several kilometers. This program also explores the connection of quantum teleportation protocols with deep mysteries of space-time physics that include black holes and wormholes.

Other participating institution: Harvard University

 

2. Quantum machine learning and quantum computation frameworks for high-energy physics – led by Caltech
Lead principal investigator: Maria Spiropulu

Machine learning algorithms have had a huge impact on the areas of pattern matching and classification. Applications at Fermilab including classifying different types of neutrino interactions in detectors and determining a particle’s path from a string of hits in a tracking chamber. With increased data volumes, scientists will require better data access methods, so researchers are also exploring the use of quantum computers for very fast data indexing and recall.

Other participating institutions: Massachusetts Institute of Technology, University of Southern California

 

3. Quantum computing for neutrino-nucleus dynamics – led by Los Alamos National Laboratory
Lead principal investigator: Rajan Gupta

Neutrinos are fleeting, elusive subatomic particles that may hold the key to the mystery of why we live in a matter-dominated universe. Scientists study neutrino interactions to get a better understanding of what trace the mysterious particles will leave in neutrino experiments like the Deep Underground Neutrino Experiment (DUNE), hosted by Fermilab. Quantum computers may be ideal for simulating the detailed outcomes of neutrino with complex, heavy nuclei, which are themselves quantum systems.

CERN and Fermilab announce big step in Deep Underground Neutrino Experiment

The largest liquid-argon neutrino detector in the world has just recorded its first particle tracks, signaling the start of a new chapter in the story of the international Deep Underground Neutrino Experiment (DUNE).

DUNE’s scientific mission is dedicated to unlocking the mysteries of neutrinos, the most abundant (and most mysterious) matter particles in the universe. Neutrinos are all around us, but we know very little about them. Scientists on the DUNE collaboration think that neutrinos may help answer one of the most pressing questions in physics: why we live in a universe dominated by matter. In other words, why we are here at all.

The enormous ProtoDUNE detector — the size of a three-story house and the shape of a gigantic cube — was built at CERN, the European laboratory for particle physics, as the first of two prototypes for what will be a much, much larger detector for the DUNE project, hosted by the U.S. Department of Energy’s Fermi National Accelerator Laboratory in the United States. When the first DUNE detector modules record data in 2026, they will each be 20 times larger than these prototypes. There will be four modules in total.

This image shows one of the first cosmic muon particle tracks recorded by the ProtoDUNE detector at CERN. Three wire planes, each of which is made up of thousands of individual wires, recorded the signal of the muon as it traveled approximately 3.8 meters through liquid argon in the detector, and the images together give scientists a three-dimensional picture of the particle's path. Image: DUNE collaboration

This image shows one of the first cosmic muon particle tracks recorded by the ProtoDUNE detector at CERN. Three wire planes, each of which is made up of thousands of individual wires, recorded the signal of the muon as it traveled approximately 3.8 meters through liquid argon in the detector, and the images together give scientists a three-dimensional picture of the particle’s path. Image: DUNE collaboration

It is the first time CERN is investing in infrastructure and detector development for a particle physics project in the United States.

The first ProtoDUNE detector took two years to build and eight weeks to fill with 800 tons of liquid argon, which needs to be kept at temperatures below minus 184 degrees Celsius (minus 300 degrees Fahrenheit). The detector records traces of particles in that argon both from cosmic rays and a beam created at CERN’s accelerator complex. Now that the first tracks have been seen, scientists will operate the detector over the next several months to test the technology in depth.

“Only two years ago we completed the new building at CERN to house two large-scale prototype detectors that form the building blocks for DUNE,” said Marzio Nessi, head of the Neutrino Platform at CERN. “Now we have the first detector taking beautiful data, and the second detector, which uses a different approach to liquid-argon technology, will be online in a few months.”

The technology of the first ProtoDUNE detector will be the same to be used for the first of the DUNE detector modules in the United States, which will be built a mile underground at the Sanford Underground Research Facility in South Dakota. More than 1,000 scientists and engineers from 32 countries spanning five continents — Africa, Asia, Europe, North America and South America — are working on the development, design and construction of the DUNE detectors. The groundbreaking ceremony for the caverns that will house the experiment was held in July 2017.

Inside the first ProtoDUNE detector, before it was filled with liquid argon. Photo: CERN

“Seeing the first particle tracks is a major success for the entire DUNE collaboration,” said DUNE co-spokesperson Stefan Soldner-Rembold of the University of Manchester, UK. “DUNE is the largest collaboration of scientists working on neutrino research in the world, with the intention of creating a cutting-edge experiment that could change the way we see the universe.”

When neutrinos enter the detectors and smash into the argon nuclei, they produce charged particles. Those particles leave ionization traces in the liquid, which can be seen by sophisticated tracking systems able to create three-dimensional pictures of otherwise invisible subatomic processes. (Watch an animation of how the DUNE and ProtoDUNE detectors work, along with other videos about DUNE.)

“CERN is proud of the success of the Neutrino Platform and enthusiastic about being a partner in DUNE, together with institutions and universities from its member states and beyond,” said Fabiola Gianotti, director-general of CERN. “These first results from ProtoDUNE are a nice example of what can be achieved when laboratories across the world collaborate. Research with DUNE is complementary to research carried out by the LHC and other experiments at CERN; together they hold great potential to answer some of the outstanding questions in particle physics today.”

The steel cage for one of the two ProtoDUNE detectors is outfitted with a steel top, hoisted into position by a crane. Photo: CERN

The steel cage for one of the two ProtoDUNE detectors is outfitted with a steel top, hoisted into position by a crane. Photo: CERN

DUNE will not only study neutrinos, but their antimatter counterparts as well. Scientists will look for differences in behavior between neutrinos and antineutrinos, which could give us clues as to why the visible universe is dominated by matter. DUNE will also watch for neutrinos produced when a star explodes, which could reveal the formation of neutron stars and black holes, and will investigate whether protons live forever or eventually decay. Observing proton decay would bring us closer to fulfilling Einstein’s dream of a grand unified theory.

“DUNE is the future of neutrino research,” said Fermilab Director Nigel Lockyer. “Fermilab is excited to host an international experiment with such vast potential for new discoveries and to continue our long partnership with CERN, on both the DUNE project and the Large Hadron Collider.”

To learn more about the Deep Underground Neutrino Experiment, the Long-Baseline Neutrino Facility that will house the experiment, and the PIP-II particle accelerator project at Fermilab that will power the neutrino beam for the experiment, visit www.fnal.gov/dune.


DUNE comprises 178 institutions from 32 countries: Armenia, Brazil, Bulgaria, Canada, Chile, China, Colombia, Czech Republic, Finland, France, Greece, India, Iran, Italy, Japan, Madagascar, Mexico, Netherlands, Paraguay, Peru, Poland, Portugal, Romania, Russia, South Korea, Spain, Sweden, Switzerland, Turkey, Ukraine, United Kingdom, and United States. The DUNE interim design report provides a detailed description of the technologies that will be used for the DUNE detectors. More information is at dunescience.org.

CERN, the European Organization for Nuclear Research, is one of the world’s leading laboratories for particle physics. The organization is located on the French-Swiss border, with its headquarters in Geneva. Its member states are: Austria, Belgium, Bulgaria, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Israel, Italy, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Spain, Sweden, Switzerland and United Kingdom. Cyprus, Serbia and Slovenia are associate member states in the pre-stage to membership. India, Lithuania, Pakistan, Turkey and Ukraine are associate member states. The European Union, Japan, JINR, the Russian Federation, UNESCO and the United States of America currently have observer status.

Fermilab is America’s premier national laboratory for particle physics and accelerator research. A U.S. Department of Energy Office of Science laboratory, Fermilab is located near Chicago, Illinois, and operated under contract by the Fermi Research Alliance LLC, a joint partnership between the University of Chicago and the Universities Research Association, Inc. Visit Fermilab’s website at www.fnal.gov and follow us on Twitter at @Fermilab.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.