accelerator technology

DOE has awarded a $1.9 million grant to Northern Illinois University and the Illinois Institute of Technology for the training of next-generation workers in accelerator science and technology. The program will cover student tuition costs for two years and fund paid research assistantships at Fermilab and Argonne. Physics professors Michael Syphers and Philippe Piot, both experts in particle accelerator research and technology, are leading the effort at NIU.

From University of Maryland, Oct. 17, 2019: Fermilab scientist Charles Thangaraj received the 40 under 40 Chicago Scientists award at the 2nd Annual Halo Awards on Oct. 12 at the Museum of Science and Industry in Chicago. The Halo Awards ceremony recognizes scientists for their dedication to translating research into real-world applications that meaningfully impact people’s lives.

For the first time, a team at Fermilab has cooled and operated a superconducting radio-frequency cavity — a crucial component of superconducting particle accelerators — using cryogenic refrigerators, breaking the tradition of cooling cavities by immersing them in a bath of liquid helium. The demonstration is a major breakthrough in the effort to develop lean, compact accelerators for medicine, the environment and industry.

From Gizmodo, Sept. 13, 2019: Physicists at Fermilab have produced and tested a powerful magnet of the sort that could appear in the next generation of particle colliders. Fermilab scientist Alexander Zlobin talks with Gizmodo about the lab’s recent milestone achievement in reaching 14.1 teslas for a steering magnet.

From Tia Sáng, Sept. 13, 2019: Để xây dựng thế hệ máy gia tốc proton mới có khả năng gia tốc hạt lớn hơn, các nhà khoa học cần những nam châm mạnh nhất để có thể lái các hạt tới gần tốc độ ánh sáng lưu chuyển quanh một vòng tròn. Với một kích cỡ vòng tròn cho trước, để đưa năng lượng của chùm tia đạt mức cao hơn, các nam châm của máy gia tốc cần đạt được lực mạnh hơn để giữ cho chùm tia đi đúng hành trình của mình.

From KopalniaWiedzy.pl, Sept. 13, 2019: Naukowcy z Fermilab poinformowali o wygenerowaniu najsilniejszego pola magnetycznego stworzonego na potrzeby akceleratorów cząstek. Nowy rekord wynosi 14,1 tesli, a wynik taki uzyskano w magnecie schłodzonym do 4,5 kelwinów, czyli -268,65 stopnia Celsjusza. Poprzedni rekord, 13,8 tesli, został osiągnięty przed 11 laty w Lawrence Berkeley National Laboratory.

Future particle colliders will need strong magnets to steer high-energy particle beams as they travel close to the speed of light on their circular path. A group at Fermilab has achieved a record field strength of 14.1 teslas for a particle accelerator steering magnet, breaking the 11-year record.

Engineers at Fermilab have shown that sometimes, to reshape the metal heart of a particle accelerator, what you need is a balloon. The new, patented technique is a novel solution to a problem that affects an essential component of accelerators: superconducting cavities.