Press release

Fermilab’s 500-mile neutrino experiment up and running

Tags:

With construction completed, the NOvA experiment has begun its probe into the mysteries of ghostly particles that may hold the key to understanding the universe

NOvA_PressRelease-hrIt’s the most powerful accelerator-based neutrino experiment ever built in the United States and the longest-distance one in the world. It’s called NOvA, and after nearly five years of construction, scientists are now using the two massive detectors – placed 500 miles apart – to study one of nature’s most elusive subatomic particles.

Scientists believe that a better understanding of neutrinos, one of the most abundant and difficult-to-study particles, may lead to a clearer picture of the origins of matter and the inner workings of the universe. Using the world’s most powerful beam of neutrinos, generated at the U.S. Department of Energy’s Fermi National Accelerator Laboratory near Chicago, the NOvA experiment can precisely record the telltale traces of those rare instances when one of these ghostly particles interacts with matter.

Construction on NOvA’s two massive neutrino detectors began in 2009. In September, the Department of Energy officially proclaimed construction of the experiment completed, on schedule and under budget.

“Congratulations to the NOvA collaboration for successfully completing the construction phase of this important and exciting experiment,” said James Siegrist, DOE associate director of science for high energy physics. “With every neutrino interaction recorded, we learn more about these particles and their role in shaping our universe.”

NOvA’s particle detectors were both constructed in the path of the neutrino beam sent from Fermilab in Batavia, Illinois, to northern Minnesota. The 300-ton near detector, installed underground at the laboratory, observes the neutrinos as they embark on their near-light-speed journey through the Earth, with no tunnel needed. The 14,000-ton far detector — constructed in Ash River, Minnesota, near the Canadian border – spots those neutrinos after their 500-mile trip and allows scientists to analyze how they change over that long distance.

For the next six years, Fermilab will send tens of thousands of billions of neutrinos every second in a beam aimed at both detectors, and scientists expect to catch only a few each day in the far detector, so rarely do neutrinos interact with matter.

From this data, scientists hope to learn more about how and why neutrinos change between one type and another. The three types, called flavors, are the muon, electron and tau neutrino. Over longer distances, neutrinos can flip between these flavors. NOvA is specifically designed to study muon neutrinos changing into electron neutrinos. Unraveling this mystery may help scientists understand why the universe is composed of matter and why that matter was not annihilated by antimatter after the big bang.

Scientists will also probe the still-unknown masses of the three types of neutrinos in an attempt to determine which is the heaviest.

“Neutrino research is one of the cornerstones of Fermilab’s future and an important part of the worldwide particle physics program,” said Fermilab Director Nigel Lockyer. “We’re proud of the NOvA team for completing the construction of this world-class experiment, and we’re looking forward to seeing the first results in 2015.”

The far detector in Minnesota is believed to be the largest free-standing plastic structure in the world, at 200 feet long, 50 feet high and 50 feet wide. Both detectors are constructed from PVC and filled with a scintillating liquid that gives off light when a neutrino interacts with it. Fiber optic cables transmit that light to a data acquisition system, which creates 3-D pictures of those interactions for scientists to analyze.

The NOvA far detector in Ash River saw its first long-distance neutrinos in November 2013. The far detector is operated by the University of Minnesota under an agreement with Fermilab, and students at the university were employed to manufacture the component parts of both detectors.

“Building the NOvA detectors was a wide-ranging effort that involved hundreds of people in several countries,” said Gary Feldman, co-spokesperson of the NOvA experiment. “To see the construction completed and the operations phase beginning is a victory for all of us and a testament to the hard work of the entire collaboration.”

The NOvA collaboration comprises 208 scientists from 38 institutions in the United States, Brazil, the Czech Republic, Greece, India, Russia and the United Kingdom. The experiment receives funding from the U.S. Department of Energy, the National Science Foundation and other funding agencies.

For more information, visit the experiment’s website: http://www-nova.fnal.gov.

Note: NOvA stands for NuMI Off-Axis Electron Neutrino Appearance. NuMI is itself an acronym, standing for Neutrinos from the Main Injector, Fermilab’s flagship accelerator.

Fermilab is America’s premier national laboratory for particle physics and accelerator research. A U.S. Department of Energy Office of Science laboratory, Fermilab is located near Chicago, Illinois, and operated under contract by the Fermi Research Alliance, LLC. Visit Fermilab’s website at www.fnal.gov and follow us on Twitter at @Fermilab.

The DOE Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Calling all nature lovers. How would you like the chance to help diversify one of the oldest prairie restorations in Illinois?

05-0415-12D-mdThe U.S. Department of Energy’s Fermi National Accelerator Laboratory is looking for volunteers to help with its annual Prairie Seed Harvest. Two harvest events are planned, on Saturday, Oct. 4, and Saturday, Nov. 1, beginning at 10 a.m. Fermilab’s site hosts 1,000 acres of restored native prairie land, and each year community members pitch in to help collect seeds from those native plants.

Less than one-tenth of one percent of native prairies in Illinois remains intact. Fermilab’s restored grassland is one of the largest prairies in the state. The deep-rooted natural grasses of the prairie help prevent erosion and preserve the area’s aquifers.

The main collection area encompasses about 100 acres, and within it, volunteers will gather seeds from about 25 different types of native plants. Some of those seeds will be used to replenish the Fermilab prairies, filling in gaps where some species are more dominant than others.

“Our objective is to collect seeds from dozens of species,” said Ryan Campbell, an ecologist at Fermilab. “We have more than 1,000 acres of restored grassland, and it’s not all of the same quality. We want to spread diversity throughout the whole site.”

Once the seeds have been collected, the Fermilab Roads and Grounds staff will store them in a greenhouse and process them for springtime planting, after controlled burns of the prairie have been conducted. The laboratory has donated some of the seeds to area schools for use in their own prairies and as educational tools.

Fermilab has been hosting the Prairie Seed Harvest every year since 1974, and it typically draws more than 200 volunteers. Both of this year’s events will last from 10 a.m. to 2 p.m., with lunch provided. Volunteers will be trained on different types of plants and how to harvest seeds. If you have them, bring gloves, a pair of hand clippers and paper grocery bags.

In case of inclement weather, call the Fermilab switchboard at 630-840-3000 to check whether the Prairie Seed Harvest has been canceled. More information on Fermilab’s prairie can be found at http://www.fnal.gov/pub/about/campus/ecology/prairie. For more information on the Prairie Seed Harvest, call the Fermilab Roads and Grounds Department at 630-840-3303.

Fermilab is America’s premier national laboratory for particle physics and accelerator research. A U.S. Department of Energy Office of Science laboratory, Fermilab is located near Chicago, Illinois, and operated under contract by the Fermi Research Alliance LLC. Visit Fermilab’s website at www.fnal.gov and follow us on Twitter at @FermilabToday.

The DOE Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

New Fermilab experiment will test the nature of the universe

A Fermilab scientist works on the laser beams at the heart of the Holometer experiment. The Holometer will use twin laser interferometers to test whether the universe is a 2-D hologram. Credit: Fermilab.

A Fermilab scientist works on the laser beams at the heart of the Holometer experiment. The Holometer will use twin laser interferometers to test whether the universe is a 2-D hologram. Credit: Fermilab.

A unique experiment at the U.S. Department of Energy’s Fermi National Accelerator Laboratory called the Holometer has started collecting data that will answer some mind-bending questions about our universe – including whether we live in a hologram.

Much like characters on a television show would not know that their seemingly 3-D world exists only on a 2-D screen, we could be clueless that our 3-D space is just an illusion. The information about everything in our universe could actually be encoded in tiny packets in two dimensions.

Get close enough to your TV screen and you’ll see pixels, small points of data that make a seamless image if you stand back. Scientists think that the universe’s information may be contained in the same way and that the natural “pixel size” of space is roughly 10 trillion trillion times smaller than an atom, a distance that physicists refer to as the Planck scale.

“We want to find out whether space-time is a quantum system just like matter is,” said Craig Hogan, director of Fermilab’s Center for Particle Astrophysics and the developer of the holographic noise theory. “If we see something, it will completely change ideas about space we’ve used for thousands of years.”

Quantum theory suggests that it is impossible to know both the exact location and the exact speed of subatomic particles. If space comes in 2-D bits with limited information about the precise location of objects, then space itself would fall under the same theory of uncertainty. The same way that matter continues to jiggle (as quantum waves) even when cooled to absolute zero, this digitized space should have built-in vibrations even in its lowest energy state.

Essentially, the experiment probes the limits of the universe’s ability to store information. If there is a set number of bits that tell you where something is, it eventually becomes impossible to find more specific information about the location – even in principle. The instrument testing these limits is Fermilab’s Holometer, or holographic interferometer, the most sensitive device ever created to measure the quantum jitter of space itself.

Now operating at full power, the Holometer uses a pair of interferometers placed close to one another. Each one sends a one-kilowatt laser beam (the equivalent of 200,000 laser pointers) at a beam splitter and down two perpendicular 40-meter arms. The light is then reflected back to the beam splitter where the two beams recombine, creating fluctuations in brightness if there is motion. Researchers analyze these fluctuations in the returning light to see if the beam splitter is moving in a certain way – being carried along on a jitter of space itself.

“Holographic noise” is expected to be present at all frequencies, but the scientists’ challenge is not to be fooled by other sources of vibrations. The Holometer is testing a frequency so high – millions of cycles per second – that motions of normal matter are not likely to cause problems. Rather, the dominant background noise is more often due to radio waves emitted by nearby electronics. The Holometer experiment is designed to identify and eliminate noise from such conventional sources.

“If we find a noise we can’t get rid of, we might be detecting something fundamental about nature – a noise that is intrinsic to space-time,” said Fermilab physicist Aaron Chou, lead scientist and project manager for the Holometer. “It’s an exciting moment for physics. A positive result will open a whole new avenue of questioning about how space works.”

The Holometer experiment, funded by the U.S. Department of Energy Office of Science and other sources, is expected to gather data over the coming year.

The Holometer team comprises 21 scientists and students from Fermilab, the Massachusetts Institute of Technology, the University of Chicago and the University of Michigan. For more information about the experiment, visit http://holometer.fnal.gov/.

Fermilab is America’s premier national laboratory for particle physics and accelerator research. A U.S. Department of Energy Office of Science laboratory, Fermilab is located near Chicago, Illinois, and operated under contract by the Fermi Research Alliance, LLC. Visit Fermilab’s website at www.fnal.gov and follow us on Twitter at @FermilabToday.

The DOE Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

 

With its second year under way, the DES team posts highlights and prepares to release images from its first year

DES-2013-01-medres

This image of the NGC 1398 galaxy was taken with the Dark Energy Camera. This galaxy lives in the Fornax cluster, roughly 65 million light-years from Earth. It is 135,000 light-years in diameter, just slightly larger than our own Milky Way galaxy, and contains more than 100 billion stars. Credit: Dark Energy Survey.

On Aug. 15, with its successful first season behind it, the Dark Energy Survey (DES) collaboration began its second year of mapping the southern sky in unprecedented detail. Using the Dark Energy Camera, a 570-megapixel imaging device built by the collaboration and mounted on the Victor M. Blanco Telescope in Chile, the survey’s five-year mission is to unravel the fundamental mystery of dark energy and its impact on our universe.

Along the way, the survey will take some of the most breathtaking pictures of the cosmos ever captured. The survey team has announced two ways the public can see the images from the first year.

Today, the Dark Energy Survey relaunched Dark Energy Detectives, its successful photo blog. Once every two weeks during the survey’s second season, a new image or video will be posted to www.darkenergydetectives.org, with an explanation provided by a scientist. During its first year, Dark Energy Detectives drew thousands of readers and followers, including more than 46,000 followers on its Tumblr site.

Starting on Sept. 1, the one-year anniversary of the start of the survey, the data collected by DES in its first season will become freely available to researchers worldwide. The data will be hosted by the National Optical Astronomy Observatory. The Blanco Telescope is hosted at the National Science Foundation’s Cerro Tololo Inter-American Observatory, the southern branch of NOAO.

In addition, the hundreds of thousands of individual images of the sky taken during the first season are being analyzed by thousands of computers at the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, Fermi National Accelerator Laboratory (Fermilab), and Lawrence Berkeley National Laboratory. The processed data will also be released in coming months.

Scientists on the survey will use these images to unravel the secrets of dark energy, the mysterious substance that makes up 70 percent of the mass and energy of the universe. Scientists have theorized that dark energy works in opposition to gravity and is responsible for the accelerating expansion of the universe.

“The first season was a resounding success, and we’ve already captured reams of data that will improve our understanding of the cosmos,” said DES Director Josh Frieman of the U.S. Department of Energy’s Fermi National Accelerator Laboratory and the University of Chicago. “We’re very excited to get the second season under way and continue to probe the mystery of dark energy.”

While results on the survey’s probe of dark energy are still more than a year away, a number of scientific results have already been published based on data collected with the Dark Energy Camera.

The first scientific paper based on Dark Energy Survey data was published in May by a team led by Ohio State University’s Peter Melchior. Using data that the survey team acquired while putting the Dark Energy Camera through its paces, they used a technique called gravitational lensing to determine the masses of clusters of galaxies.

In June, Dark Energy Survey researchers from the University of Portsmouth and their colleagues discovered a rare superluminous supernova in a galaxy 7.8 billion light years away. A group of students from the University of Michigan discovered five new objects in the Kuiper Belt, a region in the outer reaches of our solar system, including one that takes over a thousand years to orbit the Sun.

In February, Dark Energy Survey scientists used the camera to track a potentially hazardous asteroid that approached Earth. The data was used to show that the newly discovered Apollo-class asteroid 2014 BE63 would pose no risk.

Several more results are expected in the coming months, said Gary Bernstein of the University of Pennsylvania, project scientist for the Dark Energy Survey.

The Dark Energy Camera was built and tested at Fermilab. The camera can see light from more than 100,000 galaxies up to 8 billion light-years away in each crystal-clear digital snapshot.

“The Dark Energy Camera has proven to be a tremendous tool, not only for the Dark Energy Survey, but also for other important observations conducted year-round,” said Tom Diehl of Fermilab, operations scientist for the Dark Energy Survey. “The data collected during the survey’s first year — and its next four — will greatly improve our understanding of the way our universe works.”

Visit Dark Energy Detectives, the survey’s photo blog.

Visit DECam Interactive to see what the Dark Energy Camera sees.

Video: Members of the Dark Energy Survey collaboration explain what they hope to learn by studying the southern sky with the world’s most advanced digital camera, mounted on a telescope in Chile.

 

The Dark Energy Survey Collaboration comprises more than 300 researchers from 25 institutions in six countries. For more information, visit http://www.darkenergysurvey.org.

Fermilab is America’s premier national laboratory for particle physics and accelerator research. A U.S. Department of Energy Office of Science laboratory, Fermilab is located near Chicago, Illinois, and operated under contract by the Fermi Research Alliance, LLC. Visit Fermilab’s website at www.fnal.gov and follow us on Twitter at @FermilabToday.

The DOE Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

The National Optical Astronomy Observatory (NOAO) is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under cooperative agreement with the National Science Foundation.

The 50-foot-wide Muon g-2 electromagnet at rest inside the Fermilab building that will house the experiment. The magnet was moved into the new building on Wednesday, July 30, 2014. The magnet will allow scientists to precisely probe the properties of subatomic particles called muons. Photo: Fermilab.

The 50-foot-wide Muon g-2 electromagnet at rest inside the Fermilab building that will house the experiment. The magnet was moved into the new building on Wednesday, July 30, 2014. The magnet will allow scientists to precisely probe the properties of subatomic particles called muons. Photo: Fermilab.

One year ago, the 50-foot-wide Muon g-2 electromagnet arrived at the U.S. Department of Energy’s Fermi National Accelerator Laboratory in Illinois after traveling 3,200 miles over land and sea from Long Island, New York. This week, the magnet took the final few steps of that journey, moving across the Fermilab site and into the new building that now houses it.

The gigantic electromagnet is the centerpiece of Fermilab’s Muon g-2 experiment, which will investigate the properties of an elusive subatomic particle called the muon. Since its arrival at Fermilab on July 26, 2013, the magnet has been biding its time, waiting for the completion of the new building on site that will house the experiment.

That building was finished in April, and in a series of two moves over the past six days, the ring was transported across the Fermilab site and slowly pulled into place on huge metal tracks. A crowd of scientists and enthusiasts were on hand to cheer the magnet on, and applaud the next phase of muon physics at Fermilab.

“We’re all very excited to see this device move that last mile and be put in place,” said Chris Polly, project manager for the Muon g-2 experiment. “For those of us who have been working on this for years, it’s a great moment, and it brings us closer to taking data and having our questions answered.”

Muons are heavy cousins of electrons. The experiment will be used to study muons created in Fermilab’s particle accelerators. Muons “wobble” when placed in a magnetic field, and based on what we know about the universe, scientists have predicted the ultra-precise value of that wobble. The predecessor experiment using this magnet at Brookhaven National Laboratory in New York in the 1990s saw evidence for – though not definitive proof of – a departure from that expected value.

Scientists think that this deviation might be due to the presence of heavy, undiscovered particles or hidden subatomic forces.

Fermilab’s accelerator complex can generate a more intense and pure beam of muons, so the new experiment should be able to provide a definitive answer. Should the Muon g-2 experiment also see a deviation from the expected value, it could open the door to new mysteries of the universe.

The electromagnet was specifically designed for muon experiments like this one. To build a new one at Fermilab would have cost about $30 million, but transporting the ring from New York cost only $3 million.

“The arrival of the magnet one year ago, and the move to the newly completed building this week, are both testaments to the years of planning and work by the entire collaboration,” said David Hertzog, co-spokesperson for the Muon g-2 experiment. “It’s an important milestone, and cause for celebration.”

Once the ring is in place, it will take several months to set up the detectors for the experiment. Following that, the magnet will need to be shimmed to ensure the most precise measurement possible, and that process could take upwards of a year. The experiment is expected to start taking data in 2017.

Muon g-2 is the first of two muon experiments planned for Fermilab, both of which will enhance our knowledge about these fundamental particles. Both the Muon g-2 and the Muon-to-Electron (Mu2e) experiments were specifically recommended by the Particle Physics Project Prioritization Panel in its recent report, a document that serves as a road map for U.S. particle physics for the next 20 years. The P5 report was approved by the High Energy Physics Advisory Panel, which advises both the DOE and the National Science Foundation.

For information about last year’s Big Move, please visit this link: http://muon-g-2.fnal.gov/bigmove

 

The Muon g-2 collaboration comprises 120 scientists from 26 institutions in six countries. For more information about the experiment, visit http://muon-g-2.fnal.gov.

Fermilab is America’s premier national laboratory for particle physics and accelerator research. A U.S. Department of Energy Office of Science laboratory, Fermilab is located near Chicago, Illinois, and operated under contract by the Fermi Research Alliance, LLC. Visit Fermilab’s website at www.fnal.gov and follow us on Twitter at @FermilabToday.

The DOE Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Fermilab physicist Arden Warner revolutionizes oil spill cleanup with magnetizable-oil invention. Photo: Hanae Armitage

Four years ago, Fermilab accelerator physicist Arden Warner watched national news of the BP oil spill and found himself frustrated with the cleanup response.

“My wife asked ‘Can you separate oil from water?’ and I said ‘Maybe I could magnetize it!'” Warner recalled. “But that was just something I said. Later that night while I was falling asleep, I thought, you know what, that’s not a bad idea.”

Sleep forgone, Warner began experimenting in his garage. With shavings from his shovel, a splash of engine oil and a refrigerator magnet, Warner witnessed the preliminary success of a concept that could revolutionize the process of oil spill damage control.

Warner has received patent approval on the cleanup method.

The concept is simple: Take iron particles or magnetite dust and add them to oil. It turns out that these particles mix well with oil and form a loose colloidal suspension that floats in water. Mixed with the filings, the suspension is susceptible to magnetic forces. At a barely discernible 2 to 6 microns in size, the particles tend to clump together, and it only takes a sparse dusting for them to bond with the oil. When a magnetic field is applied to the oil and filings, they congeal into a viscous liquid known as a magnetorheological fluid. The fluid’s viscosity allows a magnetic field to pool both filings and oil to a single location, making them easy to remove. (View a 30-second video of the reaction.)

“It doesn’t take long — you add the filings, you pull them out. The entire process is even more efficient with hydrophobic filings. As soon as they hit the oil, they sink in,” said Warner, who works in the Accelerator Division. Hydrophobic filings are those that don’t like to interact with water — think of hydrophobic as water-fearing. “You could essentially have a device that disperses filings and a magnetic conveyor system behind it that picks it up. You don’t need a lot of material.”

Warner tested more than 100 oils, including sweet crude and heavy crude. As it turns out, the crude oils’ natural viscosity makes it fairly easy to magnetize and clear away. Currently, booms, floating devices that corral oil spills, are at best capable of containing the spill; oil removal is an entirely different process. But the iron filings can work in conjunction with an electromagnetic boom to allow tighter constriction and removal of the oil. Using solenoids, metal coils that carry an electrical current, the electromagnetic booms can steer the oil-filing mixture into collector tanks.

Unlike other oil cleanup methods, the magnetized oil technique is far more environmentally sound. There are no harmful chemicals introduced into the ocean — magnetite is a naturally occurring mineral. The filings are added and, briefly after, extracted. While there are some straggling iron particles, the vast majority is removed in one fell, magnetized swoop — the filings can even be dried and reused.

“This technique is more environmentally benign because it’s natural; we’re not adding soaps and chemicals to the ocean,” said Cherri Schmidt, head of Fermilab’s Office of Partnerships and Technology Transfer. “Other ‘cleanup’ techniques disperse the oil and make the droplets smaller or make the oil sink to the bottom. This doesn’t do that.”

Warner’s ideas for potential applications also include wildlife cleanup and the use of chemical sensors. Small devices that “smell” high and low concentrations of oil could be fastened to a motorized electromagnetic boom to direct it to the most oil-contaminated areas.

“I get crazy ideas all the time, but every so often one sticks,” Warner said. “This is one that I think could stick for the benefit of the environment and Fermilab.”

Editor’s note: Fermilab Today published a clarification on the scope of Arden Warner’s patent in its Aug. 29, 2014, issue.

The 30-ton MicroBooNE neutrino detector is gently lowered into the Liquid-Argon Test Facility at Fermilab on Monday, June 23. The detector will become the centerpiece of the MicroBooNE experiment, which will study ghostly particles called neutrinos. Photo: Fermilab.

The 30-ton MicroBooNE neutrino detector is gently lowered into the Liquid-Argon Test Facility at Fermilab on Monday, June 23. The detector will become the centerpiece of the MicroBooNE experiment, which will study ghostly particles called neutrinos. Photo: Fermilab.

On Monday, June 23, the next phase of neutrino physics at Fermilab fell (gently) into place.

The MicroBooNE detector – a 30-ton, 40-foot-long cylindrical metal tank designed to detect ghostly particles called neutrinos – was carefully transported by truck across the U.S. Department of Energy’s Fermilab site, from the warehouse building it was constructed in to the experimental hall three miles away.

The massive detector was then hoisted up with a crane, lowered through the open roof of the building and placed into its permanent home, directly in the path of Fermilab’s beam of neutrinos. There it will become the centerpiece of the MicroBooNE experiment, which will study those elusive particles to crack several big mysteries of the universe.

The MicroBooNE detector has been under construction for nearly two years. The tank contains a 32-foot-long “time projection chamber,” the largest ever built in the United States, equipped with 8,256 delicate gilded wires, which took the MicroBooNE team two months to attach by hand. This machine will allow scientists to further study the properties of neutrinos, particles that may hold the key to understanding many unexplained mysteries of the universe.

“This is a huge day for the MicroBooNE experiment,” said Fermilab’s Regina Rameika, project manager for the MicroBooNE experiment. “We’ve worked hard to create the best scientific instrument that we can. To see it moved into place was a thrill for the entire team.”

The MicroBooNE detector will now be filled with 170 tons of liquid argon, a heavy liquid that will release charged particles when neutrinos interact with it. The detector’s three layers of wires will then capture pictures of these interactions at different points in time and send that information to the experiment’s computers.

Using one of the most sophisticated processing programs ever designed for a neutrino experiment, those computers will sift through the thousands of interactions that will occur every day and create stunning 3-D images of the most interesting ones. The MicroBooNE team will use that data to learn more about how neutrinos change from one type (or “flavor”) to another, and narrow the search for a hypothesized (but as of yet, never observed) fourth type of neutrino.

“The scientific potential of MicroBooNE is really exciting,” said Yale University’s Bonnie Fleming, co-spokesperson for the MicroBooNE experiment. “After a long time spent designing and building the detector, we are thrilled to start taking data later this year.”

MicroBooNE is a cornerstone of Fermilab’s short-baseline neutrino program , which studies neutrinos traveling over shorter distances. (MINOS and NOvA, which send neutrinos through the Earth to Minnesota, are examples of long-baseline experiments.) In its recent report, the Particle Physics Project Prioritization Panel (P5) expressed strong support for the short-baseline neutrino program at Fermilab.

The P5 panel was comprised of members of the high-energy physics community. Their report was commissioned by the High Energy Physics Advisory Panel, which advises both the Department of Energy and the National Science Foundation on funding priorities.

The detector technology used in designing and building MicroBooNE will serve as a prototype for a much larger long-baseline neutrino facility planned for the United States, to be hosted at Fermilab. The P5 report also strongly supports this larger experiment, which will be designed and funded through a global collaboration.

To read the P5 report, visit this link: http://usparticlephysics.org/p5.

Fermilab is America’s premier national laboratory for particle physics and accelerator research. A U.S. Department of Energy Office of Science laboratory, Fermilab is located near Chicago, Illinois, and operated under contract by the Fermi Research Alliance, LLC. Visit Fermilab’s website at www.fnal.gov and follow us on Twitter at @FermilabToday.

The DOE Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

pipoles2-smIf you want to get children interested in the fundamentals of science, there’s nothing like letting them experience the phenomena first-hand. If you can make it fun at the same time, you have a formula for success.

That’s the thinking behind Fermilab’s in-progress outdoor physics exhibits, located near the Lederman Science Center. The Fermilab Education Office has just unveiled the latest exhibits, which allow kids to learn about basic principles of physics while playing in the sunshine.

The two new exhibits, called Wave Like a Particle and Swing Like Neutrinos, are combined into one newly built structure consisting of two poles shaped like the Greek letter Pi. Kids can make waves of various sizes by moving the rope that stretches between the two poles, thereby learning about wave propagation, one of the primary concepts of particle physics.

Children can also use the Swing Like Neutrinos portion of the exhibit – a pair of pendulums hanging from one of the Pi-shaped poles – to learn about coupled oscillations, a basic physics principle.

“Kids learn in different ways,” said Spencer Pasero of Fermilab’s Education Office. “The idea of the outdoor exhibits is to instill a love of learning into kids who respond to hands-on, fun activities.”

The Wave Like a Particle and Swing Like Neutrinos exhibits were built with funds through Fermilab Friends for Science Education, an Illinois not-for-profit organization supporting the Fermilab Education Office. Contributions were received from an anonymous donor and a grant from the Community Foundation of the Fox River Valley.

The new exhibits join the Run Like a Proton accelerator path, which opened in May of 2013. Using this feature, kids can mimic protons and anti-protons as they race along Fermilab’s accelerator chain.

“We hope this series of exhibits will activate kids’ imaginations and that they immerse themselves in the physics we’ve been doing at Fermilab for decades,” Pasero said.

The Lederman Science Center is open to the public Monday to Friday, 8:30 a.m. to 4:30 p.m., and on Saturdays from 9 a.m. to 3 p.m.

The Community Foundation of the Fox River Valley is a non-profit philanthropic organization based in Aurora, Illinois that administers individual charitable funds from which grants and scholarships are distributed to benefit the citizens of the Greater Aurora Area, the TriCities and Kendall County Illinois. For more information, please see www.communityfoundationfrv.org.

Fermilab is America’s national laboratory for particle physics research. A U.S. Department of Energy Office of Science laboratory, Fermilab is located near Chicago, Illinois, and operated under contract by the Fermi Research Alliance, LLC. Visit Fermilab’s website atwww.fnal.gov and follow us on Twitter at @FermilabToday.

The DOE Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

12-0127-03DWhat could be better than spending a fun-filled day outdoors and learning about natural science at the same time?

For the seventh year in a row, Fermi National Accelerator Laboratory is inviting families and scout troops to attend the Family Outdoor Fair on Sunday, June 8, from 1-4 p.m. The fair takes place outside the Lederman Science Center and highlights the plant and animal life found on the 6,800-acre Fermilab site in Batavia.

More than a dozen outdoor activities are planned for the fair, including a prairie scavenger hunt, a visit with Fermilab’s herd of bison and a chance to check out some turtles and tortoises up close. Kids can test whether they can run as fast as a bison, can sweep for insects and other critters and, thanks to the Naperville Astronomical Association, can safely get a long look at the sun.

Once again, the Northern Illinois Raptor Rehabilitation and Education Center, along with local raptor trainers, will be on hand with live hawks, falcons and owls, as well as a collection of bird bones, feathers and hunting gear for children to enjoy.

“We want kids to come away with an appreciation of nature,” said Sue Sheehan of the Fermilab Education Office. “There’s so much to see. We want to show kids and parents that science is everywhere, even in their own backyards.”

Of course, their backyards aren’t quite as vast as Fermilab’s. More than 1,000 acres of the laboratory site is restored natural prairie, and the U.S. Department of Energy has designated Fermilab a National Environmental Research Park.

The Family Outdoor Fun Fair is geared for first- through seventh-grade students. The fair is free and will take place rain or shine. Media is welcome to attend. No registration is required. For more information, call 630-840-5588 or email edreg@fnal.gov.

Fermilab is America’s national laboratory for particle physics research. A U.S. Department of Energy Office of Science laboratory, Fermilab is located near Chicago, Illinois, and operated under contract by the Fermi Research Alliance, LLC. Visit Fermilab’s website atwww.fnal.gov and follow us on Twitter at @FermilabToday.

The DOE Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

13-0100-15DIf you know kids between the ages of 7 and 12, you know how hard it can be to get them excited about science from a textbook. Children need science to come to life before their eyes. They need to be wowed, and to experience physical phenomena with eyes wide and jaws dropped.

That’s the thinking behind the annual Wonders of Science show, which will again pack Ramsey Auditorium at the U.S. Department of Energy’s Fermi National Accelerator Laboratory on Sunday, April 6. The show, organized and performed by award-winning high school teachers, is celebrating its 27th year at the lab. Tickets are $4.50 per person.

“This is one of our most exciting events every year,” said Spencer Pasero, an education program leader at Fermilab. “Everyone has their favorite demonstration, but there’s always something new and exciting to look forward to.”

This year’s theme is temperature and energy, and will feature Weird Science, a group of current and retired high school teachers who have been recognized locally and nationally for their ability to engage young minds. Members of the troupe have appeared on The Late Show with David Letterman, CBS News and Inside Edition.

Weird Science includes Lee Marek of the University of Illinois at Chicago (formerly of Naperville North High School), Karl Craddock of Fremd High School in Palatine, and Bill Grosser of Oak Park and River Forest high schools. Together, they will demonstrate eye-popping chemical and physical science experiments designed to be both fun and educational.

“We hope kids leave with the sense that science can be fun, and not only can they enjoy it as an experience, but they also can do it,” Pasero said.

The Wonders of Science show is intended for ages 7-12, and Scout troops are welcome. Each family will receive a science kit, which they can use to conduct their own experiments at home. Children must be accompanied by an adult. Tickets may be ordered online athttp://ed.fnal.gov/events/wos. For additional information, call 630-840-5588 or email edreg@fnal.gov.

The mission of the Fermilab Education Office is to strengthen primary- and secondary-school education by using Fermilab resources to improve teaching and learning in science, mathematics, engineering and technology. The Education Office serves as a catalyst for improving school curricula and is a resource to schools nationwide.

Fermilab is a Department of Energy national laboratory operated under contract by the Fermi Research Alliance, LLC. The DOE Office of Science is the single largest supporter of basic research in the physical sciences in the nation, and helps ensure U.S. world leadership across a broad range of scientific disciplines.