Press release

Collaboration between Fermilab, Indian institutions sets stage for future accelerators

INDORE, India (February 10, 2009) – The Department of Energy’s Fermi National Accelerator Laboratory in Batavia, Ill., today announced the signing of a new Memorandum of Understanding with four Indian institutions. The MOU establishes collaboration in the areas of superconducting acceleration science and technology and in research and development of superconducting materials.

“Ushering in the next generation of accelerator projects requires an international effort,” said Dr. Pier Oddone, director of Fermilab. “The collaboration between U.S. and Indian scientists helps set the stage for the global coordination required for future particle accelerators.”

Dr. Oddone signed the MOU in Indore, India, on Feb. 10 along with Dr. Srikumar Banerjee, director of the Bhabha Atomic Research Center; Dr. Bikash Sinha, director of the Variable Energy Cyclotron Center; Dr. Amit Roy, director of the Inter University Accelerator Center; and Dr. Vinod C. Sahni, director of the Raja Ramanna Center of Advanced Technologies.

The MOU focuses on the development of state-of-the-art superconducting radio-frequency cavities and associated components for future accelerators. The electric field inside a radio-frequency cavity accelerates particles as they pass through. Superconducting radio-frequency cavities create radio-frequency fields without electric resistance when cooled to temperatures close to absolute zero. Stringing many of these cavities together, physicists can accelerate particles quickly and efficiently to close to the speed of light.

“Collaboration with Fermilab has been an excellent experience for us both in terms of opportunities for scientific research as well as for building equipment for such research,” said Dr. Anil Kadokar, Secretary of the Department of Atomic Energy in India. “An added advantage is that this partnership will encourage young people to join such scientific endeavors in greater numbers. We welcome this collaboration for its mutual benefits.”

Proposed accelerators such as Project X at Fermilab will rely on the superconducting radio-frequency cavities to accelerate beams of protons. Project X would accelerate protons through an accelerator about 700 meters long, about the length of seven football fields. The accelerator would connect with the existing Fermilab accelerator complex and provide high-intensity proton beams to probe the quantum structure of the universe and its influence on matter at the smallest level.

“Superconducting radio frequency particle acceleration will play a critical role in future particle accelerators,” Oddone said. “This technology will take us to the next level of discovery in the fields of neutrino science and precision physics.”

Fermilab and the Indian institutions will work together on research, design, development and construction to develop the capability to initiate a project like Project X. The Indian institutions also plan to build a proton accelerator using superconducting radio-frequency technology.

Both Fermilab and the Indian institutions plan to develop the technical knowledge that could, in the long term, aid them in the construction of the International Linear Collider. Whereas Project X would use about 475 superconducting radio-frequency cavities, the ILC would be about 20 miles long and use about 16,000 cavities to accelerate electrons to unprecedented energy.

Fermilab has been collaborating with the Indian institutions on high-energy physics experiments since 1985, first on the Fermilab fixed-target experiment E706 and then on the DZero collider experiment. During the last two years, Indian scientists have made significant progress on the cavity and cryomodule design and fabrication work in collaboration with Fermilab.

“International collaboration not only helps attract the best minds to address a gamut of tasks, but it also is necessary to raise the resources required for mega-projects, as exemplified by the Large Hadron Collider in Europe,” said RRCAT Director Sahni. “The MOU between Fermilab and Indian accelerator labs reinforces that trend and also reflects the strong partnership that the two sides have built up over the years. I am sure that by working together we will be able to break new ground and achieve rapid progress in the use of superconductivity for accelerator science.”

For editors:

Fermilab, the U.S. Department of Energy’s Fermi National Accelerator Laboratory, located near Chicago, operates the Tevatron, the world’s highest-energy particle collider. The Fermi Research Alliance, LLC, operates Fermilab under a contract with DOE.

The Indian Department of Atomic Energy’s Bhabha Atomic Research Center, BARC, is a multidisciplinary organization pursuing comprehensive research and development programs for harnessing nuclear energy. The center’s R&D efforts concentrate in the fields of nuclear sciences, engineering and technology, basic sciences and allied fields. The center gears its efforts toward the use of atomic energy for power generation and the application of radiation technology in the areas of agriculture, health care and industry.

India’s Department of Atomic Energy established Raja Ramanna Center for Advanced Technology, RRCAT, to expand the activities of researchers at the BARC in the fields of lasers and accelerators. RRCAT operates two light sources. In April, 1987, it became an independent unit of the Department of Atomic Energy.

Variable Energy Cyclotron Center, VECC, is a premier R&D unit of India’s Department of Atomic Energy. The center is dedicated to carrying out research and development at the forefront of the fields of accelerator science and technology, nuclear science, material science and computer science and technology. VECC operates several accelerators, including a superconducting cyclotron.

Inter University Accelerator Center, located in New Delhi, India, is an autonomous research facility of the University Grants Commission. The center focuses on low-energy nuclear physics, materials science and radiation biology and chemistry. It operates a superconducting linear accelerator and a complete superconducting accelerator development infrastructure.

Scientists of the Pierre Auger Observatory, a project to study the highest-energy cosmic rays, will celebrate the inauguration of their 3000-square-kilometer detector array at the southern site of the observatory in Malargüe, Argentina, this Friday, November 14, 2008. The event will mark the completion of the first phase of the observatory construction and the beginning of the project’s second phase, which includes plans for a northern hemisphere site in Colorado, USA, and enhancements to the southern hemisphere site.

The inauguration celebration in Argentina will begin with an informal reception on November 13. A symposium on Friday, November 14, will include presentations on the origins of the project, the construction of the experiment and the latest science results.

The Pierre Auger Observatory is exploring the mysteries of the highest-energy cosmic rays-charged particles showering the Earth at energies 10 million times higher than the world’s highest-energy particle accelerator. Until now, there has been no consensus on the origin of these highest-energy cosmic rays.

To witness these extremely rare events, the Pierre Auger Collaboration began the construction of its Southern Observatory in the year 2000. The project consists of an array of 1600 detectors spread over 3000 square kilometers in Argentina’s Mendoza Province, just east of the Andes Mountains. Surrounding the array is a set of 24 fluorescence telescopes that view the faint ultraviolet light emitted by the cosmic-ray shower particles as they cascade through the atmosphere. More than 40 funding agencies are contributing to the observatory, which had a construction cost of approximately $53 million.

The Pierre Auger collaboration published its first physics results in the fall of 2007, revealing new insights into the properties of the highest-energy particles in the universe. The collaboration found that the arrival directions of the highest-energy cosmic rays are anisotropic. The arrival directions correlate with the distribution of nearby galaxies that contain actively radiating black holes. Several science organizations selected this remarkable result as one of the most important scientific breakthroughs in 2007.

The collaboration used its growing detector array to measure the cosmic-ray energy spectrum at the highest energies, achieving higher precision than any previous experiment. The Auger scientists found a fall-off of the flux at the highest energies. This is consistent with an idea, proposed about 40 years ago, that high-energy cosmic rays interact with photons of the ubiquitous microwave background radiation on their way through the universe. New limits on the photon and neutrino content in cosmic rays have put stringent limits on theories of cosmic-ray origins.

The Pierre Auger collaboration includes more than 350 scientists and engineers from 60 institutions in 17 countries: http://www.auger.org/collaboration/auger_institutions.html More than 40 funding agencies are contributing: http://www.auger.org/contact/agencies.html

The U.S. Department of Energy’s Fermi National Accelerator Observatory hosts the project management office for the Pierre Auger Observatory. Fermilab is operated under contract by Fermi Research Alliance, LLC.

The U.S. Department of Energy and the National Science Foundation have designated Universities Research Association, Inc. as the U.S. representative on the observatory’s international oversight board, currently chaired by URA President Fred Bernthal.

Auger country representatives are listed at http://www.auger.org/contact/

Photos and videos are available at: http://www.auger.org/media/

Discussions on energy policy, community engagement, outreach

How can the local community effectively give feedback to scientists? How can scientists understand the needs of the US Congress and their local elected officials?

Illinois State Representative Mike Fortner, of West Chicago; Nobel laureate Leon Lederman, of Batavia; and Craig Jones, community activist and a member of the Fermilab Citizens’ Task Force, of Campton Hills, will be among the speakers addressing these and other questions at a meeting held at the Department of Energy’s Fermilab and the Naperville Holiday Inn Nov. 6-8.

Nearly 600 physics students, faculty and civic leaders from across the country will attend the 2008 Quadrennial Congress of Sigma Pi Sigma, the physics honor society. The congress’s topic is “Scientific Citizenship: Connecting Physics and Society.” Presentations include: (Full program is at: http://www.sigmapisigma.org/congress/2008/program.htm)

“From Researcher to Representative, Learning to Listen to the Community” (Saturday, Nov. 8, at 1:30 p.m., Fermilab, Ramsey Auditorium) – Mike Fortner, Illinois State Representative and Associate Professor of Physics, Northern Ill. University – Louis J. Lanzerotti, Mayor of Harding Township, NJ; former School Board Member of the Township; and Distinguished Research Professor of Physics, New Jersey Institute of Technology. – Craig Jones, Member of the Fermilab International Linear Collider Citizens’ Task Force

“Is U.S. Science Policy at a Turning Point?” (Friday, Nov. 7, at 9:15 a.m., Fermilab, Ramsey Auditorium) – Richard Garwin, IBM Fellow Emeritus at the IBM T. J. Watson Research Center

“What Presidents and Physicists Need to Know About Science” (Saturday, Nov. 8, at 8:30 p.m.; Naperville, Holiday Inn Select, Grand Ballroom) – Leon Lederman, Physics Nobel Laureate; Director Emeritus, Fermilab; Pritzker Professor of Science, Illinois Institute of Technology; Resident Scholar, Illinois Mathematics and Science Academy

“Einstein as Citizen: Addressing Race and Racism” (Friday, Nov. 7, at 8:30 p.m.; Naperville, Holiday Inn Select, Ballroom) – Fred Jerome and Rodger Taylor, co-authors of the book Einstein on Race and Racism

“Energy Efficiency: Benchmarks & the Citizen’s Response” (Saturday, Nov. 8, at 9:30 a.m., Fermilab, Ramsey Auditorium): – David Goldston, Director of the Harvard Energy Studies Program – Julia Phillips, Director, Physical, Chemical, and Nano Sciences Center, Sandia National Labs

Reporters planning to attend the congress can register by sending their contact info to Kurt Riesselmann, Fermilab Office of Communication, kurtr@fnal.gov, (630)840-3351, by Nov. 7.

Batavia, IL and Upton, NY—The world’s largest computing grid is ready to tackle mankind’s biggest data challenge from the earth’s most powerful accelerator. Today, three weeks after the first particle beams were injected into the Large Hadron Collider (LHC), the Worldwide LHC Computing Grid combines the power of more than 140 computer centers from 33 countries to analyze and manage more than 15 million gigabytes of LHC data every year.

The United States is a vital partner in the development and operation of the WLCG. Fifteen universities and three U.S. Department of Energy (DOE) national laboratories from 11 states contribute their power to the project.

“The U.S. has been an essential partner in the development of the vast distributed computing system that will allow 7,000 scientists around the world to analyze LHC data, complementing its crucial contributions to the construction of the LHC,” said Glen Crawford of the High Energy Physics program in DOE’s Office of Science. DOE and the National Science Foundation support contributions to the LHC and to the computing and networking infrastructures that are an integral part of the project.

U.S. contributions to the Worldwide LHC Computing Grid are coordinated through the Open Science Grid, a national computing infrastructure for science. The Open Science Grid not only contributes computing power for LHC data needs, but also for projects in many other scientific fields including biology, nanotechnology, medicine and climate science.

“Particle physics projects such as the LHC have been a driving force for the development of worldwide computing grids,” said Ed Seidel, director of the National Science Foundation’s Office of Cyberinfrastructure. “The benefits from these grids are now being reaped in areas as diverse as mathematical modeling and drug discovery.”

“Open Science Grid members have put an incredible amount of time and effort in developing a nationwide computing system that is already at work supporting America’s 1,200 LHC physicists and their colleagues from other sciences,” said Open Science Grid Executive Director Ruth Pordes from DOE’s Fermi National Accelerator Laboratory.

Dedicated optical fiber networks distribute LHC data from CERN in Geneva, Switzerland to eleven major “Tier-1” computer centers in Europe, North America and Asia, including those at DOE’s Brookhaven National Laboratory in New York and Fermi National Accelerator Laboratory in Illinois. From these, data is dispatched to more than 140 “Tier-2” centers around the world, including twelve in the United States.

“Our ability to manage data at this scale is the product of several years of intense testing,” said Ian Bird, leader of the Worldwide LHC Computing Grid project. “Today’s result demonstrates the excellent and successful collaboration we have enjoyed with countries all over the world. Without these international partnerships, such an achievement would be impossible.”

“When the LHC starts running at full speed, it will produce enough data to fill about six CDs per second,” said Michael Ernst, director of Brookhaven National Laboratory’s Tier-1 Computing Center. “As the first point of contact for LHC data in the United States, the computing centers at Brookhaven and Fermilab are responsible for storing and distributing a great amount of this data for use by scientists around the country. We’ve spent years ramping up to this point, and now, we’re excited to help uncover some of the numerous secrets nature is still hiding from us.”

Physicists in the U.S. and around the world will sift through the LHC data torrent in search of tiny signals that will lead to discoveries about the nature of the physical universe. Through their distributed computing infrastructures, these physicists also help other scientific researchers increase their use of computing and storage for broader discovery.

“Grid computing allows university research groups at home and abroad to fully participate in the LHC project while fostering positive collaboration across different scientific departments on many campuses,” said Ken Bloom from the University of Nebraska-Lincoln, manager for seven Tier-2 sites in the United States.

 

Information about LHC Grid Fest is available at: http://www.fnal.gov/gridfest/

Notes to editors

Grid computing and Large Hadron Collider images are available at www.uslhc.us/Images.

More information about U.S. computing for the LHC, including a list of U.S. institutions involved in the Worldwide LHC Computing Grid, is available at http://www.uslhc.us/The_US_and_the_LHC/Computing

U.S. support for LHC participation

The U.S. Department of Energy (DOE) and the National Science Foundation (NSF) invested a total of $531 million in the construction of the Large Hadron Collider and the ATLAS and CMS detectors. DOE provided $200 million for the construction of critical LHC accelerator components, $250 million for the design and construction of the ATLAS and CMS detectors, and continues to support U.S. scientists’ work on the detectors and accelerator R&D. NSF has focused its support on funding university scientists who have contributed to the design and construction of CMS and ATLAS ($81 million). In addition, both agencies promote the development of advanced computing innovations to meet the enormous LHC data challenge.  More than 1,700 scientists, engineers, students and technicians from 94 U.S. universities and laboratories (full list at http://www.uslhc.us/The_US_and_the_LHC/Collaborating_Institutions ) participate in the LHC and its experiments.

LHC Computing Grid participants

Signatories to the Worldwide LHC Computing Grid are: Australia, Austria, Belgium, Canada, China, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Hungary, Italy, India, Israel, Japan, Republic of Korea, the Netherlands, Norway, Pakistan, Poland, Portugal, Romania, the Russian Federation, Slovenia, Spain, Sweden, Switzerland, Taipei, Turkey, the United Kingdom, Ukraine, and the United States of America.

Brookhaven National Laboratory is operated and managed for DOE’s Office of Science by Brookhaven Science Associates. Visit Brookhaven Lab’s electronic newsroom for links, news archives, graphics, and more: http://www.bnl.gov/newsroom.

Fermilab is a DOE Office of Science national laboratory, operated under contract by the Fermi Research Alliance, LLC. The Department of Energy Office of Science is the nation’s single-largest supporter of basic research in the physical sciences.

The Open Science Grid is a national distributed computing grid for data-intensive research, supported by the U.S. Department of Energy and the National Science Foundation. Visit www.opensciencegrid.org.

CERN, the European Organization for Nuclear Research, is the world’s leading laboratory for particle physics. It has its headquarters in Geneva. At present, its Member States are Austria, Belgium, Bulgaria, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Italy, Netherlands, Norway, Poland, Portugal, Slovakia, Spain, Sweden, Switzerland and the United Kingdom. India, Israel, Japan, the Russian Federation, the United States of America, Turkey, the European Commission and UNESCO have Observer status.

 

Washington, D.C. – An international collaboration of scientists today sent the first beam of protons zooming at nearly the speed of light around the world’s most powerful particle accelerator-the Large Hadron Collider (LHC) located at the CERN laboratory near Geneva, Switzerland. The U.S. Department of Energy (DOE) and the National Science Foundation (NSF) invested a total $531 million in the construction of the accelerator and its detectors, which scientists believe could help unlock extraordinary discoveries about the nature of the physical universe.

Celebrations across the U.S. and around the world mark the LHC’s first circulating beam, an occasion more than 15 years in the making. An estimated 10,000 people from 60 countries have helped design and build the accelerator and its massive particle detectors, including more than 1,700 scientists, engineers, students and technicians from 94 U.S. universities and laboratories supported by DOE’s Office of Science and NSF.

“As the largest and most powerful particle accelerator on Earth, the LHC represents a monumental technical achievement,” said U.S. Department of Energy Undersecretary for Science Raymond L. Orbach. “I congratulate the world’s scientists and engineers who have made contributions to the construction of the accelerator for reaching this milestone. We now eagerly await the results that will emerge from operation of this extraordinary machine.”

The first circulating beam is a major accomplishment on the way to the ultimate goal: high-energy beams colliding in the centers of the LHC’s particle detectors. Beyond revealing a new world of unknown particles, the LHC experiments could explain why those particles exist and behave as they do. They could reveal the origins of mass, shed light on dark matter, uncover hidden symmetries of the universe and possibly find extra dimensions of space.

NSF has focused its support on funding university scientists who have contributed to the design and construction of the two largest detectors, CMS and ATLAS, and promoted the development of advanced computing innovations, essential to address the challenges posed by the enormity and richness of data to be accumulated. Continued support will enable scientists to optimize detector performance, successful data accumulation and sophisticated analysis, necessary for discovery.

“This national and international collaboration of unprecedented scope, and our investment in basic science, fundamental to the NSF mission, provide an exciting opportunity to solve some of the core mysteries of the universe,” said Arden L. Bement, Jr., director of the NSF. “With the operation of the LHC, anticipation of transformative scientific discoveries soars to new heights.”

DOE provided support for the design and construction of the ATLAS and CMS detectors through two DOE national laboratories-Brookhaven National Laboratory in New York and Fermi National Accelerator Laboratory (Fermilab) in Illinois. While the construction was managed through Fermilab and Brookhaven, scientists and engineers at universities and other DOE national laboratories-Argonne National Laboratory in Illinois and Lawrence Berkeley National Laboratory (Berkeley Lab) in California-played key roles in the design and construction and are finalizing preparations to collect and analyze the data at the energy frontier. In addition, DOE supported about 150 scientists, engineers and technicians from three DOE national laboratories-Brookhaven, Fermilab and Berkeley Lab-that built critical components for the LHC accelerator. They are joined by colleagues from DOE’s Stanford Linear Accelerator Center and Texas A&M University in ongoing accelerator R&D.

“The LHC is a discovery machine,” said CERN Director General Robert Aymar, “its research programme has the potential to change our view of the Universe profoundly, continuing a tradition of human curiosity that’s as old as mankind itself.”

# # #

Notes for editors:

Photos and videos from the LHC First Beam day at CERN are available at: http://www.cern.ch/lhc-first-beam

Information about the US participation in the LHC is available at http://www.uslhc.us.

Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California. Visit our website at www.lbl.gov.

Brookhaven National Laboratory is operated and managed for DOE’s Office of Science by Brookhaven Science Associates. Visit Brookhaven Lab’s electronic newsroom for links, news archives, graphics, and more: http://www.bnl.gov/newsroom.

Fermilab is a U.S. Department of Energy Office of Science national laboratory, operated under contract by the Fermi Research Alliance, LLC. The U.S. Department of Energy Office of Science is the nation’s single-largest supporter of basic research in the physical sciences.

CERN, the European Organization for Nuclear Research, is the world’s leading laboratory for particle physics. It has its headquarters in Geneva. At present, its Member States are Austria, Belgium, Bulgaria, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Italy, Netherlands, Norway, Poland, Portugal, Slovakia, Spain, Sweden, Switzerland and the United Kingdom. India, Israel, Japan, the Russian Federation, the United States of America, Turkey, the European Commission and UNESCO have Observer status.

Photos and videos from the LHC First Beam day at CERN are available at: http://www.cern.ch/lhc-first-beam

Information about the US participation in the LHC is available at http://www.uslhc.us.

 

 

Batavia, Ill. – Physicists of the DZero experiment at the U.S. Department of Energy’s Fermi National Accelerator Laboratory have discovered a new particle made of three quarks, the Omega-sub-b (Ωb). The particle contains two strange quarks and a bottom quark (s-s-b). It is an exotic relative of the much more common proton and weighs about six times the proton mass.

The discovery of the doubly strange particle brings scientists a step closer to understanding exactly how quarks form matter and to completing the “periodic table of baryons.” Baryons (derived from the Greek word “barys,” meaning “heavy”) are particles that contain three quarks, the basic building blocks of matter. The proton comprises two up quarks and a down quark (u-u-d).

Combing through almost 100 trillion collision events produced by the Tevatron particle collider at Fermilab, the DZero collaboration found 18 incidents in which the particles emerging from a proton-antiproton collision revealed the distinctive signature of the Omega-sub-b. Once produced, the Omega-sub-b travels about a millimeter before it disintegrates into lighter particles. Its decay, mediated by the weak force, occurs in about a trillionth of a second.

Theorists predicted the mass of the Omega-sub-b baryon to be in the range of 5.9 to 6.1 GeV/c2. The DZero collaboration measured its mass to be 6.165 ± 0.016 GeV/c2. The particle has the same electric charge as an electron and has spin J=1/2.

The Omega-sub-b is the latest and most exotic discovery of a new type of baryon containing a bottom quark at the Tevatron particle collider at Fermilab. Its discovery follows the observation of the Cascade-b-minus baryon (Ξb-), first observed by the DZero experiment in 2007, and two types of Sigma-sub-b baryons (Σb), discovered by the CDF experiment at Fermilab in 2006.

“The observation of the doubly strange b baryon is yet another triumph of the quark model,” said DZero cospokesperson Dmitri Denisov, of Fermilab. “Our measurement of its mass, production and decay properties will help to better understand the strong force that binds quarks together.”

According to the quark model, invented in 1961 by theorists Murray Gell-Mann and Yuval Ne’eman as well as George Zweig, the four quarks up, down, strange and bottom can be arranged to form 20 different spin-1/2 baryons. Scientists now have observed 13 of these combinations.

“The measurement of the mass of the Omega-sub-b provides a great test of computer calculations using lattice quantum chromodynamics,” said Fermilab theorist Andreas Kronfeld. “The discovery of this particle is an example of all the wonderful results pouring out of accelerator laboratories over the past few years.”

The Omega-sub-b is a relative of the famous and “even stranger” Omega-minus, which is made of three strange quarks (s-s-s).

“After the discovery of the Omega-minus, people started to accept that quarks really exist,” said DZero co-spokesperson Darien Wood, of Northeastern University. “Its discovery, made with a bubble chamber at Brookhaven National Laboratory in 1964, is the textbook example of the predictive power of the quark model.”

The DZero collaboration submitted a paper that summarizes the details of its discovery to the journal Physical Review Letters. It is available online at: http://www-d0.fnal.gov/Run2Physics/WWW/results/final/B/B08G/

DZero is an international experiment of about 600 physicists from 90 institutions in 18 countries. It is supported by the U.S. Department of Energy, the National Science Foundation and a number of international funding agencies. Fermilab is a national laboratory funded by the Office of Science of the U.S. Department of Energy, operated under contract by Fermi Research Alliance, LLC.

Photos and graphics of the Large Hadron Collider are available at:
http://multimedia-gallery.web.cern.ch/multimedia-gallery/PhotoGallery_Main.aspx and http://www.uslhc.us/Images.

Fermilab plans September 10 “Pajama Party” to witness first beam at LHC

Batavia, Ill. — Journalists and guests are invited to witness the start-up of the Large Hadron Collider live and in real time at the LHC Remote Operations Center at the Department of Energy’s Fermilab, in Batavia, Illinois in the early morning hours at 1:30 a.m. CDT on Wednesday, September 10. A celebration breakfast will be served following the LHC start-up.

Journalists planning to attend the First-Beam Pajama Party at Fermilab are asked to call the Fermilab Office of Communication at 630-840-2326 or e-mail lizzie@fnal.gov

On September 10, scientists at the Large Hadron Collider in Geneva, Switzerland will attempt for the first time to send a proton beam around the 27-kilometer-long tunnel of the world’s most powerful particle accelerator. Live connections between CERN and Fermilab’s LHC Remote Operations Center will follow the action in Switzerland as it happens.

Beam will begin circulating at about 9 a.m. local time in Switzerland. Due to the time difference between Geneva and Chicago, first beam will occur at about 2 a.m. Chicago time. To allow journalists and guests to watch LHC first-beam operations as they happen, Fermilab will host a “pajama party” at the laboratory, beginning at 1:30 a.m. on Wednesday, September 10.

Fermilab will broadcast a live satellite feed from CERN. Computers in the Remote Operations Center at Fermilab will monitor operations. Scientists from the LHC experiments, CMS and ATLAS, along with accelerator experts, will be on hand to explain first-beam events.

Information about the event is available at http://www.fnal.gov/pajamaparty/. More information about U.S. participation in the LHC and its experiments is available at http://www.uslhc.us.

Fermilab scientists to explain what will happen on September 10

Batavia, Ill. – To answer reporters’ questions about the upcoming startup of the Large Hadron Collider and what it means for research at the Tevatron collider, the Department of Energy’s Fermilab offers a 2-hour Q&A session with Fermilab scientists on Thursday, Sept. 4, from 10:00 a.m. to noon in Wilson Hall. Reporters also will obtain a tour of the LHC Remote Operations Center at Fermilab.

A few days later, on Sept. 10, Fermilab will host a “First-beam Pajama Party” for scientists, guests and media representatives to celebrate the startup of the LHC in real time, at 1:30 a.m. CDT.

At the Q&A session on Sept. 4, four scientists will be on hand to answer in laymen’s terms such questions as “What does the startup mean for the future of Fermilab?”, “How does the LHC startup compare to the Tevatron startup in 1983?” and “Why do scientists build larger and larger accelerators?” The scientists are Peter Limon, who was instrumental in initiating U.S. participation in the LHC construction and who spent 22 months at CERN helping with its installation and commissioning; Dan Green, who’s led the U.S. participation in the construction of the CMS experiment at the LHC; Roger Dixon, who worked on the construction of the Fermilab Tevatron as a staff member and today is the head of the Fermilab Accelerator Division; and Joe Lykken, who has published scientific papers on extra dimensions and other phenomena that the LHC could discover.

The Large Hadron Collider, about 17 miles in circumference, is the largest scientific instrument ever constructed. On Sept. 10, scientists in Geneva, Switzerland, will attempt for the first time to send a proton beam around the ring. More than 1,700 scientists in the United States participate in one of the LHC experiments. The Department of Energy and the National Science

Foundation have contributed a total of $531 million to the construction of the CMS and ATLAS detectors and the LHC machine over twelve years.

Reporters planning to attend the Q&A session on Sept. 4 should send an email to Kurt Riesselmann, kurtr@fnal.gov, or call 630-840-5681.

Reporters planning to attend the First-Beam Pajama Party at Fermilab should call the Fermilab Office of Communication at 630-840-2326 or e-mail Elizabeth Clements at lizzie@fnal.gov.

The Fermi Research Alliance LLC operates Fermilab under a contract with the U.S. Department of Energy.

Photos and graphics of the Large Hadron Collider are available at:
http://multimedia-gallery.web.cern.ch/multimedia-gallery/PhotoGallery_Main.aspx and http://www.uslhc.us/Images.

Fermilab plans September 10 “Pajama Party” to witness first beam at LHC

Batavia, Ill. — Journalists and guests are invited to witness the start-up of the Large Hadron Collider live and in real time at the LHC Remote Operations Center at the Department of Energy’s Fermilab, in Batavia, Illinois in the early morning hours of Wednesday, September 10.

On that date, scientists at the Large Hadron Collider in Geneva, Switzerland will attempt for the first time to send a proton beam around the 27-kilometer-long tunnel of the world’s most powerful particle accelerator. Live connections between CERN and Fermilab’s LHC Remote Operations Center will follow the action in Switzerland as it happens.

Beam will begin circulating at about 9 a.m. local time in Switzerland. Due to the time difference between Geneva and Chicago, first beam will occur at about 2 a.m. Chicago time. To allow journalists and guests to watch LHC first-beam operations as they happen, Fermilab will host a “pajama party” at the laboratory, beginning at 1:30 a.m. on Wednesday, September 10.

Fermilab will broadcast a live satellite feed from CERN. Computers in the Remote Operations Center at Fermilab will monitor operations. Scientists from the LHC experiments, CMS and ATLAS, along with accelerator experts, will be on hand to explain first-beam events.

Journalists planning to attend the First-Beam Pajama Party at Fermilab are asked to call the Fermilab Office of Communication at 630-840-3351 or e-mail jjackson@fnal.gov.

A list of LHC startup events in the U.S. and contact information for each is available at http://www.uslhc.us/first_beam. More information about U.S. participation in the LHC and its experiments is available at http://www.uslhc.us.

Batavia, IL, Berkeley, CA and Upton, NY — On September 10, scientists at the Large Hadron Collider will attempt for the first time to send a proton beam zooming around the 27-kilometer-long accelerator. The LHC, the world’s most powerful particle accelerator, is located at CERN in Geneva, Switzerland. Journalists are invited to attend LHC first beam events at CERN and several locations within the United States. Information about the CERN event and accreditation procedures is available at . A list of LHC startup events in the U.S. and contact information for each is available at http://www.uslhc.us/first_beam.

About 150 scientists from three U.S. Department of Energy Office of Science National Laboratories – Brookhaven National Laboratory on Long Island, Fermi National Accelerator Laboratory in Illinois and Lawrence Berkeley National Laboratory in California – have built crucial LHC accelerator components. They are joined by colleagues from the Stanford Linear Accelerator Center and the University of Texas at Austin in commissioning and continuing R&D for the LHC.

United States contributions to the Large Hadron Collider are supported by the U.S. Department of Energy Office of Science and the National Science Foundation.

The LHC will go for a test drive this weekend, when the first particles are injected into a small section of the LHC. The LHC is the final step in a series of accelerators that bring beam particles from a standstill to energies of 7 TeV. In the injection test this weekend, scientists will make the first attempt to send protons into the LHC, steering them around approximately one-eighth of the LHC ring before safely disposing of the low-intensity beam.

Next up is a series of tests to confirm that the entire LHC machine is capable of accelerating beams to an energy of 5 TeV, the target energy for 2008. On September 10, LHC scientists will go full throttle and try for the first circulating beam. First collisions of protons in the center of the LHC experiments are expected four to eight weeks later.

“We’re finishing a marathon with a sprint,” said CERN’s Lyn Evans, the LHC project leader. “It’s been a long haul, and we’re all eager to get the LHC research program underway.”

About 1,600 scientists from 93 U.S. institutions participate in the LHC experiments, which will analyze the LHC’s high-energy collisions in search of extraordinary discoveries about the nature of the physical universe. The LHC experiments could reveal the origins of mass, shed light on dark matter, uncover hidden symmetries of the universe and possibly find extra dimensions of space.

U.S. first beam events will take place at Fermilab near Chicago, Illinois, Brookhaven Lab in Upton, New York, and in the San Francisco Bay area. More information is available at http://www.uslhc.us/first_beam.
Notes for editors:

More information about U.S. participation in the LHC and its experiments is available at http://www.uslhc.us.

A list of the U.S. institutions participating in the LHC and its experiments is available at: http://www.uslhc.us/The_US_and_the_LHC/Collaborating_Institutions

Fermilab, the U.S. Department of Energy’s Fermi National Accelerator Laboratory located near Chicago, operates the Tevatron, the world’s highest-energy particle collider. The Fermi Research Alliance LLC operates Fermilab under a contract with DOE.

Photos and graphics of the Large Hadron Collider are available at:
http://multimedia-gallery.web.cern.ch/multimedia-gallery/PhotoGallery_Main.aspx and http://www.uslhc.us/Images.