dark matter

From Department of Energy, July 6, 2020: DOE announces $132 million in funding for 64 university research awards on a range of topics in high-energy physics to advance knowledge of how the universe works at its most fundamental level. Projects include experimental work on neutrinos at Fermilab, the search for dark matter, studies of the nature of dark energy and the expansion of the universe with the Dark Energy Spectroscopic Instrument and and investigation of the Higgs boson from data collected at the Large Hadron Collider at CERN in Switzerland.

From Science News, June 17, 2020: An experiment searching for cosmic dark matter may have finally detected something. But it’s not dark matter. Scientists with the XENON1T experiment reported data June 17 showing an unexpectedly large number of blips within their detector. Fermilab scientist Dan Hooper is quoted in this piece.

From Scientific American, June 9, 2020: Dark matter researchers are reassessing theories about how dark matter particles lighter than a proton might appear in their detectors. In a recent paper, Fermilab scientists Noah Kurinsky and Gordan Krnjaic propose that a detector could find plasmons — aggregates of electrons moving together in a material — produced by dark matter.

A good dark matter detector has a lot in common with a good teleconference setup: You need a sensitive microphone and a quiet room. The SENSEI experiment has demonstrated world-leading sensitivity and the low background needed for an effective search for low-mass dark matter.

From Nature World News, May 20, 2020: Two studies have shown evidence of how a larger satellite galaxy can draw smaller ones into them as they get “trapped” into orbiting the Milky Way. Such an arrangement can inform astronomers and researchers about the nature of the formation of galaxies as well as insights into dark matter and its nature. Fermilab scientist Alex Drlica-Wagner is featured.

Hector Carranza Jr. of the University of Texas at Arlington has received the prestigious Department of Energy Office of Science Graduate Student Research award, or SCGSR, to conduct his research at Fermilab. DOE awarded the fellowship to 62 students from U.S. universities. He will work on light-mass dark matter searches at the ICARUS neutrino experiment.

From Gizmodo, May 5, 2020: Fermilab scientist Brian Nord weighs in on the question of how automated devices, such as an autonomously operating telescope, free from human biases and complications, could find the solutions to questions about dark matter and dark energy.

From Live Science, April 29, 2020: One of the deepest mysteries in physics could be explained by a long-since vanished form of dark matter. Fermilab scientist Dan Hooper is one of the authors of the new result. If an ancient form of dark matter decayed out of existence, that loss would have decreased the mass of the universe, which would have led to less gravity holding the universe together, which would have affected the speed at which the universe expands — helping explain the disagreement between measurements of the universe’s expansion.