Deep below the surface in South Dakota, construction crews have been working tirelessly to carve out a network of caverns and tunnels that one day will house a huge neutrino experiment. Their efforts are paying off: With almost 400,000 tons of rock extracted from the earth, the excavation is now half complete.
Once finished, the Long-Baseline Neutrino Facility will be the site of the international Deep Underground Neutrino Experiment. DUNE will focus on studying neutrinos, elusive particles that may hold the answers to many of the universe’s mysteries, such as why our universe is made of matter and how black holes and neutron stars are born. More than 1,000 scientists and engineers from over 30 countries are a part of LBNF/DUNE.
LBNF will provide the space, infrastructure and particle beam for DUNE, hosted by the U.S. Department of Energy’s Fermi National Accelerator Laboratory. It includes underground caverns for a near detector at Fermilab, about 40 miles west of Chicago, and a far detector located 800 miles away at the Sanford Underground Research Facility in South Dakota.
The new underground area at SURF will consist of three large caverns. Two will measure around 500 feet long, 65 feet wide and 90 feet high. These will provide space to house four detector modules — each filled with 17,000 tons of ultrapure liquid argon. The third will be around 625 feet long, 65 feet wide and 36 feet tall and contain cryogenic support systems, detector electronics and data acquisition equipment.

When complete later this year, this cavern will be around 500 feet long, 65 feet wide and 90 feet high. It will be one of three caverns that will provide space to house particle detector modules and other equipment for the Deep Underground Neutrino Experiment. Photo: David Smith, Fermilab
To create these caverns, a total of approximately 800,000 tons of rock will be excavated and moved to the surface. Once complete, the footprint of the underground area with the three caverns will cover about the size of eight soccer fields.
Thyssen Mining Inc., the company contracted to carry out the excavation, began the underground work at SURF in 2021. This January, construction crews reached a critical milestone: 50% completion.
“We have excavated roughly 395,000 tons,” said Ryan Moe, the U.S. general manager at Thyssen Mining. “It’s going well.”
Careful, painstaking work
The first half of the excavation involved several important steps: mobilizing large equipment underground; creating a ventilation shaft; carefully creating a network of tunnels known as drifts; and excavating enormous caverns.
Moving all the necessary equipment underground was no simple task. It involved taking the underground construction mining equipment apart, lowering the parts a mile below the ground through a narrow shaft, then reassembling the construction machinery underground. It was a process that “required a lot of time,” said Michael Gemelli, the LBNF Far-Site Conventional Facilities project manager.
“We have excavated roughly 395,000 tons. It’s going well.” – Ryan Moe, the U.S. general manager at Thyssen Mining
One of the pieces of equipment brought underground was the raise bore machine, which was used to create a ventilation shaft for cooling and airflow to the underground caverns. To create this shaft, workers used the raise bore machine to drill a 13 3/4-inch pilot hole. Then, they attached a 12-foot-diameter reamer head to the drill stem and back-reamed the pilot hole to form a raise bore hole that is 1,200 feet in height.
Once the equipment was underground, construction crews began excavating the drifts, an interconnecting highway of tunnels that connect the three caverns. To form these underground tunnels, the miners used the drill-and-blast technique, which involves drilling a series of holes, then filling those holes with explosives to blast away the rock.
Caverns begin to take shape
Construction crews now are in the process of excavating the caverns using the drill-and-blast method. An important milestone during this first half of the excavation was the completion of the caverns’ top headings: dome-shaped upper sections of each of the caverns.
When forming the cavern top headings, the contractor had to execute this work methodically, said Gemelli. It involves initially excavating a small pilot tunnel to assess the geology and ground water conditions, then enlarge the sides to create the full span of the caverns. “This type of intensive mining required a lot of different steps to support the ground during excavation,” Gemelli added.
Following the excavation, workers installed steel monorail beams in the caverns to accommodate the cranes that will later be used to erect scientific equipment. They also reinforced both the drifts and cavern top headings with ground support anchors, wire mesh and sprayed concrete.

Almost 800,000 tons of rock need to be excavated to create the space for the South Dakota portion of the Deep Underground Neutrino Experiment. Half of the excavation is now complete. Graphic: Fermilab
Safety first
Currently, 145 people from Thyssen work on site at SURF. The operations team, which works underground each day, consists of roughly 115 people. The rest includes engineers and administrative staff working on the surface.
The Thyssen team has successfully reached the halfway point of the excavation while maintaining an excellent standard of safety.
“Our safety record underground has been very good, and we would like to continue to the end of the project with nobody getting hurt,” said Moe. “Second to safety is to deliver a high-quality project, and everybody’s been happy with the quality of the work that we’ve done.”
Accelerating forward
The completion of the top headings sets the stage for the next phase of the excavation, which will involve drilling and blasting downward from those headings to carve out the rest of the caverns. “The last half of the project is all about excavating these three caverns,” Gemelli said. “This will be the peak period of rock excavation.”
Teams will also pour concrete floors in the base of the caverns and in all the interconnecting drifts. Once that’s complete, they will move the construction machinery out of the caverns — a process that will require first breaking down the equipment into smaller pieces, then sending the components up through the shaft to the surface.
This last half of the excavation will move much faster than the first half, according to Gemelli. The second phase of the excavation is now in full swing and is expected to be complete in 2024. “The hardest part of this project is now over with,” Gemelli said. “But we’ve still got a lot to do.”
Fermi National Accelerator Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

After finding a passion for the power of sound and the beauty of science in his youth, Roger Zare has been selected as Fermilab’s 2023 guest composer. Photo: Roger Zare
The artist behind the tonal landscape of the “Green Flash” and the rhythmic exuberance of “Far from Equilibrium” is the U.S. Department of Energy’s Fermi National Accelerator Laboratory’s 2023 guest composer Roger Zare.
Currently living in Boone, North Carolina, Zare creates compositions for full orchestras, wind ensembles and single instruments, while serving as a visiting assistant professor of music at the Hayes School of Music at Appalachian State University. He previously served as an instructional assistant professor of theory and composition at Illinois State University.
Awarded for a variety of his work, Zare has even taken part in a workshop hosted by CERN at the Montreux Jazz Festival, where he presented as part of a session, titled “The Physics of Music and The Music of Physics.” A performance at CERN of his piece, “LHC,” performed by the award-winning Donald Sinta Saxophone Quartet, followed. The four movements of the piece explore different aspects of particle physics, from the duality of quark pairs to the energy in the beams of the LHC at that time, Zare said.
Instantly enamored by the beautiful sounds of the piano and violin in his youth, Zare continued his journey in music by producing more than 80 compositions — half of which are about science — over the course of his 37 years. His intersectional work translates concepts of higher-energy physics into the language of music to compose work that translates scientific concepts into music while still remaining accessible to the audience. Such work has allowed him to invent compositions that speak to other people as well as his own heart.
“I love the mind-blowing nature of what science is – where it is able to describe things that we’re almost unable to touch ourselves and explain things in the universe,” said Zare. “I’m excited by these big concepts in science, such as subatomic particles, and I can express my excitement through music.”
While Zare isn’t a scientist himself, he appreciates the complexity of physics; he will study certain topics in the field that serve as inspiration for his pieces so he can have a keener understanding. For instance, Zare’s piece called “Far from Equilibrium” was a collaboration between the composer, Chicago-based astrophysicist Elizabeth Hicks and choreographer Megan Rhyme. They helped guide his understanding, and the resulting composition focuses on the physics of turbulence. He said the piece touched on ideas of the chaos theory to the energy cascade of fluid particles as they progress toward turbulence.
“I experimented with unusual temporal notation to create unpredictable musical effects that represented the physics about which I was learning,” Zare said. “Working on this project was one of the most engaging and enlightening experiences I have had, and it continues to inform how I approach composition to this day.”
Zare was one of the 70 applicants from around the world who applied for Fermilab’s year-long guest composer program. The program enables Fermilab physicists and one composer to collaborate and bridge music and physics; ultimately, it’s intended to inspire people and, through the music created during the residency, help them appreciate science from a different perspective. Now in its third year, the program provides composers the means to build their contacts and communicate the science conducted at Fermilab.
“This program is a unique way to share the synergies and creativity that are common to both art or music and science, and to use music and art as a way to explore and communicate some of the scientific principles, experiments and work that we have going on at Fermilab,” said Janet MacKay-Galbraith, director of the guest composer program. “There are so many commonalities between science, music and art.”
“Hopefully, my work connects to people who aren’t necessarily scientists and helps inform them about some part of nature or the universe that they didn’t know about before.” – Roger Zare
For the guest composer selection process, a five-person committee with scientists, administrators and artists evaluate each applicant’s submission packets. Each packet will include a composer’s resume, two to three letters of recommendations, work samples and a statement of intent. One of the key factors the committee keeps in mind when reviewing submissions, MacKay-Galbraith said, is that the science explored is “represented appropriately and definitively.” In 2023, the program will run from Jan. 1 to Dec. 31.
“Roger had a remarkable statement of intent with a deep affinity for writing music about science. He had a very clear idea of what he wanted to compose, and what he needed to do to execute it,” MacKay-Galbraith said. “One of the things that Roger had that was very interesting to us was that in addition to his catalog of science-inspired work, he has created compositions for small and large chamber ensembles, which allows some flexibility in trying to figure out how to best showcase his role.”
Another source of inspiration for Zare is the DUNE detector that’s currently under construction. The way physicists study neutrinos and even the size of the future detector fascinate the composer. Because he sees music in a visual way, Zare tries to make musical shapes that reflect something in the world. During his residency with Fermilab, he hopes to create a musical story that imagines a journey a neutrino might take before reaching the neutrino experiment’s detector.
“The opening of the work will be chaotic and violent, representing the collapsing star. A middle section will represent the neutrino’s journey at the speed of light with paradoxical tempos occurring simultaneously – the neutrino is moving at the incredibly fast speed limit of the universe, but from our frame of reference, its time is essentially standing still,” Zare said. “The final section will represent the DUNE detector with grandiose music, eventually retracting into sparse flickers of sound that represent the occasional neutrinos interacting with it.”
Embracing the notion that music can communicate and even foster scientific understanding, Zare hopes his residency at Fermilab helps educate people about science and enrich their lives through sound.
“Hopefully, my work connects to people who aren’t necessarily scientists and helps inform them about some part of nature or the universe that they didn’t know about before,” said Zare.
The Fermilab composer-in-residence program is funded by the Fermi Research Alliance.
Fermi National Accelerator Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.
The accelerator upgrade project at the U.S. Department of Energy’s Fermi National Accelerator Laboratory made important progress before the end of 2022. In December, Whittaker Construction & Excavating Inc. was awarded the contract to build the Linac Complex for the Proton Improvement Plan II project, or PIP-II.
PIP-II is an essential enhancement to the Fermilab particle accelerator complex. Its new 215-meter linear accelerator, or linac, will eventually power the high-energy neutrino beam for the international Deep Underground Neutrino Experiment, hosted by Fermilab.
The Linac Complex is the biggest single procurement for PIP-II. The approximately 800,000-square-foot complex has four components: the linac tunnel, where the linear accelerator will reside; the linac gallery that will house equipment, much of which will come from our international partners as in-kind contributions; the high bay building, where the loading dock and non-superconducting front end of the linac will be located; and a beam transfer line.

An artistic rendering of the PIP-II campus at Fermilab. The Linac Complex is the long building in the foreground and the associated tunnel below grade; it will house a 215-meter-long linear particle accelerator that will power the world’s most powerful high-energy neutrino beam. Image: Fermilab
To build the complex, Whittaker will excavate 76,000 cubic yards of earthwork and construct 50,000 square feet of below-grade enclosure, requiring 20,000 cubic yards of concrete, as well as 55,000 square feet of surface buildings.
The entire construction project is expected to take approximately 39 months, starting January 2023.
Kevin Bomstad, senior project manager at Whittaker Construction, said, “We are very excited to be a part of another PIP-II construction project. As a local business, we are just as excited for our entire construction team of local subcontractors within Northern Illinois and the Greater Chicago Metro area. WCEI is proud to support a project that reinforces Batavia’s reputation as an international hub for high-energy physics.”
In November, Fermilab received funds from the Inflation Reduction Act, some of which are allocated to PIP-II. These funds will be used to accelerate long-lead time items to mitigate supply chain issues.
Fermilab is located on 6,800 acres of prairie land in Batavia, Illinois, a Chicago suburb. The area selected for the PIP-II site minimizes the impact on the prairie, which Fermilab maintains. The site resides along Fermilab’s Main Ring Road, where contractors can work without interrupting other operations of the lab.
Find more information about PIP-II at pip2.fnal.gov.
Fermi National Accelerator Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.