Newsroom

A physicist at the Italian National Institute for Nuclear Physics, Venanzoni will help prepare the Muon g-2 collaboration for its highly anticipated first scientific publication and work with partners to ensure a long life for the experiment, where scientists are searching for new particles emerging from the quantum foam that surrounds all matter.

Scientists are testing the components and systems for the international Deep Underground Neutrino Experiment, hosted by Fermilab, with other liquid-argon particle detectors. One such detector is ICEBERG, which is over 10,000 times smaller than DUNE will be. ICEBERG’s measurements are providing insight for future neutrino experiments.

Particle physics is driven by surprise. Researchers in the 1960s studying tiny but ubiquitous particles called neutrinos found only a fraction of what they expected to be in their detector. That unexpected result eventually led to the discovery that neutrinos are shape-shifters, oscillating between three types as they travel. In this stop-motion video, Symmetry writer Zack Savitsky imagines a painter discovering a similar surprise among his art supplies.

Funding will go towards NSF-led AI Research Institutes and DOE QIS Research Centers over five years, establishing 12 multidisciplinary and multi-institutional national hubs for research and workforce development in these critical emerging technologies. Together, the institutes will spur cutting-edge innovation, support regional economic growth and advance American leadership in these critical industries of the future.

Fermilab has been selected to lead one of five national centers to bring about transformational advances in quantum information science as a part of the U.S. National Quantum Initiative. The initiative provides the new Superconducting Quantum Materials and Systems Center — based at Fermilab and comprising 20 partner institutions — $115 million over five years with the goal of building and deploying a beyond-state-of-the-art quantum computer based on superconducting technologies. The center will also develop new quantum sensors, which could lead to the discovery of the nature of dark matter and other elusive subatomic particles.