On Oct. 21, the PIP-II Injector Test Facility accelerated proton beam through its superconducting section for the first time. At this test bed for the upcoming PIP-II superconducting accelerator, collaborators will test novel particle accelerator physics concepts and technologies to be deployed in the high-tech front section of PIP-II, the future heart of the laboratory accelerator complex. The milestone achievement also marks the start of a new era at Fermilab of proton beam delivery using superconducting accelerators.

To detect the rare and subtle interactions of dark matter with ordinary matter, the particle detectors for the SuperCDMS experiment must be cooled to temperatures near absolute zero and surrounded by ultrapure copper. From the mine all the way to deployment at SNOLAB, researchers are going to great lengths to ensure the purity of the copper.

Scientists working on experiments at the LHC are continually refining our understanding of the fundamental constituents of our universe. Every measurement, every new, uncovered facet of a subatomic particle comes only after a thorough and rigorous analysis of the data. The way they access that data may soon get an upgrade at Fermilab, where CMS collaborators recently installed a new solid-state technology at its computing facility. The technology will complement the standard spinning-disk hard drives that have been the dominant computer storage devices for the last several decades.

Fermilab joins the global celebration of Dark Matter Day. Hear from Fermilab scientists during a special webinar on Saturday, Oct. 31, at 1 p.m. CT. Take a virtual tour of the lab’s dark matter experiments and detectors, and learn how Fermilab is helping answer questions about the mysterious stuff that makes up 25% of our universe.