
Derek Plant demonstrates his award-winning Ghost Train Generator at the National Innovation Summit in May. In the background are Fermilab’s Aaron Sauers (left) and Charles Thangaraj. Photo courtesy of Cherri Schmidt
The damsel in distress, tied up and left on the railroad tracks, is one of the oldest and most clichéd cinema tropes.
Browsing YouTube late at night, Fermilab Technical Specialist Derek Plant found that this clichéd crime has connections to real, contemporary accidents that happen far more than they should. The videos all begin the same way: a large vehicle — a bus, semi or other low-clearance vehicle — is stuck on a railroad crossing. In the end, the train crashes into the stuck vehicle, destroying it and sometimes even derailing the train. According to the Federal Railroad Administration, every year hundreds of vehicles meet this grisly fate by trains, which can take over a mile to stop.
“I was just surprised at the number of these that I found,” Plant said. “For every accident that’s videotaped, there are probably many more.”
Inspired by a workplace safety class that preached a principle of minimizing the impact of accidents, Derek set about looking for solutions to the problem of trains hitting stuck vehicles. Railroad tracks are elevated for proper drainage, and the humped profile of many crossings can cause a vehicle to bottom out.
“Theoretically, we could lower all the crossings so that they’re no longer a hump. But there are 200,000 crossings in the United States,” Plant said. “Railroads and local governments are trying hard to minimize the number of these crossings by creating overpasses, or elevating roadways. That’s cost-prohibitive, and it’s not going to happen soon.”
Other solutions, such as re-engineering the suspension on vehicles likely to get stuck, seemed equally improbable.
After studying how railroad signaling systems work, Plant came up with an idea: to fake the presence of a train. His invention was developed in his spare time using techniques and principles he learned over his almost two decades at Fermilab. It is currently in the patent application process and being written and filed by Fermilab’s Office of Technology Transfer.
“If you cross over a railroad track and you look down the tracks, you’ll see red or yellow or green lights,” he said. “Trains have traffic signals too.”
These signals are tied to signal blocks — segments of the tracks that range from a mile to several miles in length. When a train is on the tracks, its metal wheels and axle connect both rails, forming an electric circuit through the tracks to trigger the signals. These signals inform other trains not to proceed while one train occupies a block, avoiding pileups.
Plant thought, “What if other vehicles could trigger the same signal in an emergency?” By faking the presence of a train, a vehicle stuck on the tracks could give advanced warning for oncoming trains to stop and stall for time. Hence the name of Plant’s invention: the Ghost Train Generator.
To replicate the train’s presence, Plant knew he had to create a very strong electric current between the rails. The most straightforward way to do this is with massive amounts of metal, as a train does. But for the Ghost Train Generator to be useful in a pinch, it needs to be small, portable and easily applied. The answer to achieving these features lies in strong magnets and special wire.
“Put one magnet on one rail and one magnet on the other and the device itself mimics — electrically — what a train would look like to the signaling system,” he said. “In theory, this could be carried in vehicles that are at high risk for getting stuck on a crossing: semis, tour buses and first-response vehicles,” Plant said. “Keep it just like you would a fire extinguisher — just behind the seat or in an emergency compartment.”
Once the device is deployed, the train would receive the signal that the tracks were obstructed and stop. Then the driver of the stuck vehicle could call for emergency help using the hotline posted on all crossings.
Plant compares the invention to a seatbelt.
“Is it going to save your life 100 percent of the time? Nope, but smart people wear them,” he said. “It’s designed to prevent a collision when a train is more than two minutes from the crossing.”
And like a seatbelt, part of what makes Plant’s invention so appealing is its simplicity.
“The first thing I thought was that this is a clever invention,” said Aaron Sauers from Fermilab’s technology transfer office, who works with lab staff to develop new technologies for market. “It’s an elegant solution to an existing problem. I thought, ‘This technology could have legs.’”
The organizers of the National Innovation Summit seem to agree. In May, Fermilab received an Innovation Award from TechConnect for the Ghost Train Generator. The invention will also be featured as a showcase technology in the upcoming Defense Innovation Summit in October.
The Ghost Train Generator is currently in the pipeline to receive a patent with help from Fermilab, and its prospects are promising, according to Sauers. It is a nonprovisional patent, which has specific claims and can be licensed. After that, if the generator passes muster and is granted a patent, Plant will receive a portion of the royalties that it generates for Fermilab.
Fermilab encourages a culture of scientific innovation and exploration beyond the field of particle physics, according to Sauers, who noted that Plant’s invention is just one of a number of technology transfer initiatives at the lab.
Plant agrees — Fermilab’s environment help motivate his efforts to find a solution for railroad crossing accidents.
“It’s just a general problem-solving state of mind,” he said. “That’s the philosophy we have here at the lab.”
Nigel Lockyer has been reappointed as the director of the U.S. Department of Energy’s Fermi National Accelerator Laboratory. During his first four years as leader of the world-renowned laboratory he helped enhance its international scientific leadership, including the launch of a pioneering international particle physics project hosted by Fermilab.
Lockyer’s second five-year term, which begins Sept. 3, 2018, comes as Fermilab begins building its flagship project that will send neutrino particles underground from Illinois to South Dakota to unlock new insights into the origins of the universe. The lab is also a leader in the Large Hadron Collider at CERN in Switzerland while serving as the home of groundbreaking experiments conducted by scientists from around the world.
“For decades, scientists working at Fermilab have made major discoveries that have greatly illuminated the nature of matter and the universe. Under Nigel’s outstanding leadership, Fermilab is not only continuing many of its important ongoing projects, but has embarked upon a new ambitious research agenda for the coming years that will enable further profound discoveries,” said Robert J. Zimmer, president of the University of Chicago and chair of the Board of Directors of Fermi Research Alliance LLC.
The Fermi Research Alliance, which was formed in 2006, is a joint partnership of the University of Chicago and the Universities Research Association Inc. Together they manage Fermilab under a contract with the Department of Energy. Fermilab’s operations include a powerful complex of particle accelerators and sophisticated experiments to study the nature of matter, energy, space and time, with more than 4,500 scientists from 50 countries using the research facilities annually.
“On behalf of the Universities Research Association, Nigel has been an extraordinary leader, and we join the University of Chicago in enthusiastically supporting this reappointment,” said Lou Anna K. Simon, chair of the Universities Research Association and vice chair of Fermi Research Alliance LLC.
During his first term, Lockyer positioned Fermilab as a world leader in research of neutrinos, spearheading the successful launch of the Long-Baseline Neutrino Facility with locations in Illinois and South Dakota. The facility will house the Deep Underground Neutrino Experiment, a massive research project that brings together more than 1,000 scientists from 31 countries in a quest to understand the hard-to-detect particles and usher in a new era of international particle physics research.
“DOE is committed to supporting world-leading science at its national laboratories,” said Steve Binkley, acting director of the DOE Office of Science. “LBNF/DUNE exemplifies America’s strong partnerships with the international community in pioneering scientific discoveries.”
Lockyer has forged new international partnerships dedicated to advancing experiments at the laboratory while retaining Fermilab’s leadership in the Large Hadron Collider and Compact Muon Solenoid experiment at CERN. Fermilab has contributed major components for the collider’s accelerator and Compact Muon Solenoid experiment upgrades.
As Fermilab director, Lockyer has continued Fermilab’s trailblazing program in particle astrophysics that seeks to understand the nature of dark energy and discover particles of dark matter. He has led efforts to revitalize the laboratory’s infrastructure, accelerated the laboratory’s efforts to translate scientific discoveries to applications for society and kicked off new initiatives such as Fermilab’s participation in the Chicago Quantum Exchange.
Lockyer earned a bachelor’s degree in physics from York University and a doctorate in physics from the Ohio State University. He served for more than two decades as a physics faculty member at the University of Pennsylvania.
Before arriving at Fermilab, Lockyer was director of Canada’s TRIUMF laboratory for particle and nuclear physics and a professor of physics and astronomy at the University of British Columbia. He is the 2006 recipient of the American Physical Society’s Panofsky Prize for his leading research on the bottom quark.
Fermilab is America’s particle physics and accelerator laboratory. A U.S. Department of Energy Office of Science laboratory, Fermilab is located near Chicago, Illinois, and is operated under contract by the Fermi Research Alliance LLC. Visit Fermilab’s website at www.fnal.gov and follow us on Twitter at @Fermilab.
The DOE Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.
Fermi Research Alliance LLC operates Fermilab under contract with the U.S. Department of Energy’s Office of Science. FRA is a partnership of the University of Chicago and Universities Research Association Inc., a consortium of 90 research universities.
What does it take to throw the biggest Fermilab Open House in decades?
Months of planning, 80 buses, 900 eager workers, four Mr. Freeze shows, 15,000 brochures, 28 bison, two muon experiments, 25 neutrino trading cards, 50 years of incredible science—and 10,000 friends of Fermilab.
Sept. 23 felt more like summer than the second day of fall, but Fermilab fans, new friends and future scientists were undeterred by the heat and enjoyed a full day of scientific discovery. The Fermilab Community Open House commemorating the laboratory’s 50th anniversary provided visitors the unique opportunity to see parts of the lab rarely open to the public, like the 350-foot-deep shaft leading to Fermilab’s neutrino experiment cavern or the lab’s state-of-the art factory for particle detectors.
For most visitors, there was too much to see and do in one day, but every part of the Fermilab campus seemed full of enthusiastic faces, soaking up science, and equally exuberant lab staff and collaborators sharing what they do at Fermilab.
“It’s high-level physics geeks talking about high-level physics — what’s not to love?” said one upbeat visitor.
Among the more popular attractions were the Muon g-2 experiment, with its famous magnet, which arrived at Fermilab in 2013 from Long Island, New York; Mr. Freeze and his cool cryogenic shows, wowing crowds with liquid nitrogen; and the Chicagoland STEM Fair, where visitors had the chance to engage with science through demonstrations from Chicagoland’s STEM community.
The Lederman Science Education Center was also a hot spot for hands-on family fun, with easy-to-understand demonstrations of the science that drives Fermilab experiments.
“I enjoyed the tour of Fermilab’s linear accelerator, but at first my kids didn’t quite understand the science,” said Feng, a Naperville resident. “As soon as we came to the accelerator table at the science center, it clicked and now they understand how it works too.”

Guests at the Open House enjoy their time at the Lederman Science Center, where they learned about particle physics, accelerator science and other STEM fields.
Many visitors checked out parts of the laboratory’s linear accelerator, as well as the Main Control Room, where lab employee monitor the passage of particle beams through the accelerator complex.
“Your 50th Anniversary was very educational and totally cool,” said another guest. “The buildings, experiments all very educational. I must say that Fermilab itself is a United Nations of great people who as we saw were happy, friendly, full of smiles and very grateful to show us the behind the scenes of their workplaces.”
Other attractions included the Technical Campus, which offered a chance to visit the bison and those who care for them, learn about how Fermilab makes superconducting magnets, and to chat live with scientists from CERN in Switzerland. From there, visitors could take buses to see facilities such as the Cryomodule Test Facility where new, state-of-the-art particle accelerator technologies are developed. They could also visit the Silicon Detector Facility, where visitors could learn all about Fermilab’s study of dark matter and dark energy; the development of next-generation particle detector components and quantum sensors; and Fermilab’s contribution to the South Pole Telescope — not to mention the historic, otherworldly-looking Bubble Chamber.
“Thank you so much for your fantastic Open House. The employees were so informative, welcoming and positive even in the crazy heat,” said one visitor. “It was wonderful to be able to show our young boys such tremendous science right here in the Chicagoland area. Our whole family enjoyed learning together! In the words of our seven-year-old, “It was amazing!'”

Visitors learn about the history of the Tevatron and the CDF and DZero experiments at the Silicon Detector Facility.
The muon and neutrino experiments were a big hit too with adults and kids alike.
“We got to see all the muon experiments and then we got to see ICARUS. It was super cool!” said Jack, a nine-year-old Chicago resident. ICARUS is a 760-ton neutrino detector that was delivered to Fermilab from CERN in July. “My favorite part was going down into the tunnel to see the Muon Delivery Ring,” he said.
Jack plans to be a future Fermilab scientist, but he’ll be back before then.
“We’ve already marked the Family Open House in February on our calendar!” added his mom.
Wilson Hall was a hub of science, art, history and advanced computing. Guests also got to learn about some of Fermilab’s partners, such as the Department of Energy, Sanford Lab and IBM, who hosted an exhibit on quantum computers.
Fermilab’s Open House was a big hit, and there’s no better way to celebrate 50 years of science than to share the excitement with the laboratory’s friends and neighbors. If you missed the Open House or didn’t get a chance to see everything you wanted to, the Fermilab site is open every day of the year. The lab hosts events, tours and plenty of other opportunities to learn about Fermilab’s mission to discover more about our universe. We hope you’ll be part of our next 50 years!
Read more about the Fermilab Community Open House in The Beacon-News, The Daily Herald and Naperville Community Television.
To see Fermilab’s full calendar of science, nature, education and cultural events for adults and kids, visit events.fnal.gov.

Jo Johnson learns about accelerator technologies at Fermilab. From left: Fermilab Chief Strategic Partnerships Officer Alison Markovitz; Fermilab scientist Anna Grassellino; Andrew Price of the UK Science and Innovation Network; DUNE co-spokesperson Mark Thomson; STFC Chief Executive Brian Bowsher; UK Minister of State for Universities, Science, Research and Innovation Jo Johnson. Photo: Reidar Hahn
UK minister Jo Johnson traveled to the United States this week to sign the first ever umbrella science and technology agreement between the two nations and to announce approximately $88 million in funding for the international Long-Baseline Neutrino Facility and Deep Underground Neutrino Experiment.
On Thursday, he visited the host laboratory for LBNF/DUNE, the U.S. Department of Energy’s Fermi National Accelerator Laboratory, emphasizing the importance of the project and the strong scientific partnership between the two countries.
Johnson, the UK minister of state for universities, science, research and innovation, signed the agreement on Wednesday in Washington, D.C. Signing for the United States was Judith G. Garber, acting assistant secretary of state for oceans and international environmental and scientific affairs.
This new agreement lays the groundwork for additional collaboration between the U.S. DOE, its national laboratories (including Fermilab) and the UK Science and Technology Facilities Council. STFC funds research in particle physics, nuclear physics, space science and astronomy in the United Kingdom. The U.S. DOE is the largest supporter of basic research in the physical sciences in the United States.
“Our continued collaboration with the U.S. on science and innovation benefits both nations,” said Johnson, “and this agreement will enable us to share our expertise to enhance our understanding of many important topics that have the potential to be world changing.”
LBNF/DUNE will be a world-leading international neutrino experiment based in the United States. Fermilab’s powerful particle accelerators will create the world’s most intense beam of neutrinos and send it 800 miles through Earth to massive particle detectors, which will be built a mile underground at the Sanford Underground Research Facility in South Dakota.
The UK research community is already a major contributor to the DUNE collaboration, providing expertise and components to the facility and the experiment. UK contributions range from the high-power neutrino production target to the data acquisition systems to the software that reconstructs particle interactions into visible 3-D readouts.
DUNE will be the first large-scale experiment hosted in the United States that runs as a truly international project, with more than 1,000 scientists and engineers from 31 countries building and operating the facility. Its goal is to learn more about ghostly particles called neutrinos, which may provide insight into why we live in a matter-dominated universe that survived the Big Bang.

The UK delegation visits the Fermilab underground neutrino experimental area. UK Minister Jo Johnson stands in the center. Immediately to his left is Fermilab Director Nigel Lockyer. Photo: Reidar Hahn
In addition to Johnson, the UK delegation to Fermilab included Brian Bowsher, chief executive of STFC; Andrew Price of the UK Science and Innovation Network; and Martin Whalley, deputy consul general from the Great Britain Consulate in Chicago.
They toured several areas of the lab, including the underground cavern that houses the NOvA neutrino detector, and the Cryomodule Test Facility, where components of the accelerator that will power DUNE are being tested. The UK will contribute world-leading expertise in particle accelerators to the upgrade of Fermilab’s neutrino beam and accelerator complex.
“This investment is part of a long history of UK research collaboration with the U.S.,” said Bowsher. “International partnerships are the key to building these world-leading experiments, and I am looking forward to seeing our scientists work with our colleagues in the U.S. in developing this experiment and the exciting science that will happen as a result.”
UK institutions have been a vital part of Fermilab’s 50-year history, from the earliest days of the laboratory. UK labs and universities were important partners in the main Tevatron experiments, CDF and DZero, in the 1980s and 1990s. UK institutions have been involved with accelerator research and development, are partners in Fermilab’s muon experiments and are at the forefront of Fermilab’s focus on neutrino physics.
Sixteen UK institutions (14 universities and two STFC-funded labs) are contributors to the DUNE collaboration, the U.S.-hosted centerpiece for a world-class neutrino experiment. The collaboration is led by Mark Thomson, professor of experimental particle physics at the University of Cambridge, and Ed Blucher, professor and chair of the Department of Physics at the University of Chicago.
“Our colleagues in the United Kingdom have been critical partners for Fermilab, for LBNF/DUNE and for the advancement of particle physics around the world,” said Fermilab Director Nigel Lockyer. “We look forward to the discoveries that these projects will bring.”
Fermilab is America’s premier national laboratory for particle physics and accelerator research. A U.S. Department of Energy Office of Science laboratory, Fermilab is located near Chicago, Illinois, and operated under contract by the Fermi Research Alliance LLC, a joint partnership between the University of Chicago and the Universities Research Association, Inc. Visit Fermilab’s website at www.fnal.gov and follow us on Twitter at @Fermilab.
The DOE Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Tom Kroc, Matteo Quagliotto and Mike Geelhoed set up a sample beneath the A2D2 accelerator to test the electron beam. Photo: Reidar Hahn
Particle accelerators are the engines of particle physics research at Fermilab. They generate nearly light-speed, subatomic particles that scientists study to get to the bottom of what makes our universe tick. Fermilab experiments rely on a number of different accelerators, including a powerful, 500-foot-long linear accelerator that kick-starts the process of sending particle beams to various destinations.
But if you’re not doing physics research, what’s an accelerator good for?
It turns out, quite a lot: Electron beams generated by linear accelerators have all kinds of practical uses, such as making the wires used in cars melt-resistant or purifying water.
A project called Accelerator Application Development and Demonstration (A2D2) at Fermilab’s Illinois Accelerator Research Center will assist Fermilab and its partners to explore new applications for compact linear accelerators, which are only a few feet long rather than a few hundred. These compact accelerators are of special interest because of their small size — they’re cheaper and more practical to build in an industrial setting than particle physics research accelerators — and they can be more powerful than ever.
“A2D2 has two aspects: One is to investigate new applications of how electron beams might be used to change, modify or process different materials,” said Fermilab’s Tom Kroc, an A2D2 physicist. “The second is to contribute a little more to the understanding of how these processes happen.”
To develop these aspects of accelerator applications, A2D2 will employ a compact linear accelerator that was once used in a hospital to treat tumors with electron beams. With a few upgrades to increase its power, the A2D2 accelerator will be ready to embark on a new venture: exploring and benchmarking other possible uses of electron beams, which will help specify the design of a new, industrial-grade, high-power machine under development by IARC and its partners.
It won’t be just Fermilab scientists using the A2D2 accelerator: As part of IARC, the accelerator will be available for use (typically through a formal CRADA or SPP agreement) by anyone who has a novel idea for electron beam applications. IARC’s purpose is to partner with industry to explore ways to translate basic research and tools, including accelerator research, into commercial applications.
“I already have a lot of people from industry asking me, ‘When can I use A2D2?’” said Charlie Cooper, general manager of IARC. “A2D2 will allow us to directly contribute to industrial applications — it’s something concrete that IARC now offers.”
Speaking of concrete, one of the first applications in mind for compact linear accelerators is creating durable pavement for roads that won’t crack in the cold or spread out in the heat. This could be achieved by replacing traditional asphalt with a material that could be strengthened using an accelerator. The extra strength would come from crosslinking, a process that creates bonds between layers of material, almost like applying glue between sheets of paper. A single sheet of paper tears easily, but when two or more layers are linked by glue, the paper becomes stronger.
“Using accelerators, you could have pavement that lasts longer, is tougher and has a bigger temperature range,” said Bob Kephart, director of IARC. Kephart holds two patents for technologies related to cross-linking pavement materials. “Basically, you’d put the road down like you do right now, and you’d pass an accelerator over it, and suddenly you’d turn it into really tough stuff — like the bed liner in the back of your pickup truck.”
This process has already caught the eye of the U.S. Army Corps of Engineers, which will be one of A2D2’s first partners. Another partner will be the Chicago Metropolitan Water Reclamation District, which will test the utility of compact accelerators for water purification. Many other potential customers are lining up to use the A2D2 technology platform.
“You can basically drive chemical reactions with electron beams — and in many cases those can be more efficient than conventional technology, so there are a variety of applications,” Kephart said. “Usually what you have to do is make a batch of something and heat it up in order for a reaction to occur. An electron beam can make a reaction happen by breaking a bond with a single electron.”
In other words, instead of having to cook a material for a long time to reach a specific heat that would induce a chemical reaction, you could zap it with an electron beam to get the same effect in a fraction of the time.
In addition to exploring the new electron-beam applications with the A2D2 accelerator, scientists and engineers at IARC are using cutting-edge accelerator technology to design and build a new kind of portable, compact accelerator, one that will take applications uncovered with A2D2 out of the lab and into the field. The A2D2 accelerator is already small compared to most accelerators, but the latest R&D allows IARC experts to shrink the size while increasing the power of their proposed accelerator even further.
“The new, compact accelerator that we’re developing will be high power and high energy for industry,” Cooper said. “This will enable some things that weren’t possible in the past. For something such as environmental cleanup, you could take the accelerator directly to the site.”
While the IARC team develops this portable accelerator, which should be able to fit on a standard trailer, the A2D2 accelerator will continue to be a place to experiment with how to use electron beams — and study what happens when you do.
“The point of this facility is more development than research, however there will be some research on irradiated samples,” said Fermilab’s Mike Geelhoed, one of the A2D2 project leads. “We’re all excited — at least I am. We and our partners have been anticipating this machine for some time now. We all want to see how well it can perform.”


