Fermilab feature

Shaping the technology transforming our society

In November, the Chicago Quantum Exchange held a workshop about ethics and societal impacts of artificial intelligence and quantum computing technologies. Participants from a wide variety of academic backgrounds, from physicists to sociologists, discussed the implications of technology on society and vice versa and identified critical steps scientists need to take so technology is developed and implemented ethically and responsibly.

Technology and society are intertwined. Self-driving cars and facial recognition technologies are no longer science fiction, and data and efficiency are harbingers of this new world.

But these new technologies are only the beginning. In the coming decades, further advances in artificial intelligence and the dawn of quantum computing are poised to change lives in both discernible and inconspicuous ways.

“Even everyday technology, like a smartphone app, affects people in significant ways that they might not realize,” said Fermilab scientist Daniel Bowring. “If there are concerns about something as familiar as an app, then we need to take more opaque and complicated technology, like AI, very seriously.”

A two-day workshop took place from Oct. 31-Nov.1 at the University of Chicago to raise awareness and generate strategies for the ethical development and implementation of AI and quantum computing. The workshop was organized by the Chicago Quantum Exchange, a Chicago-based intellectual hub and community of researchers whose aim is to promote the exploration of quantum information technologies, and funded by the Kavli Foundation and the Center for Data and Computing, a University of Chicago center for research driven by data science and AI approaches.

Members of the Chicago Quantum Exchange engage in conversation at a workshop at the University of Chicago. Photo: Anne Ryan, University of Chicago

At the workshop, industry experts, physicists, sociologists, journalists and more gathered to learn, share insights and identify next steps as AI and quantum computing advance.

“AI and quantum computing are developing tools that will affect everyone,” said Bowring, a member of the workshop organizing team. “It was important to us to get as many stakeholders in the room as possible.”

Workshop participants listened to presentations that framed concerns such as power asymmetries, algorithmic bias and privacy before breaking out into small groups to deliberate these topics and develop actionable strategies. Groups reported to all attendees after each breakout session. On the last day of the workshop, participants considered how they would nurture the dialogue.

At one of the breakout sessions, participants discussed the balance between collaborative quantum computing research and national security. Today, the results of quantum computing research are dispersed in a wide variety of academic journals, and a lot of code is accessible and open source. However, because of its potential implications for cybersecurity and encryption, quantum computing is also of interest to national security, so it may be subject to intelligence and export controls. What endeavors, if any, should be open source or private? Are these outcomes realizable? What level of control should be maintained? How should these technologies be regulated?

“We’re already behind on setting ground rules for these technologies, which, if left to progress on their own, could increase power asymmetries in society,” said Brian Nord, Fermilab and University of Chicago scientist and member of the workshop organizing team. “Our research programs, for example, need to be crafted in a way that does not reinforce or exacerbate these asymmetries.”

Workshop participants will continue the dialogue through online and in-person meetings to address key ethical and societal issues in the quantum and AI space. Potential future activities include writing proposals for joint research projects that consider ethical and societal implications, white papers addressed to academic audiences, and media editorials and developing community action plans.

Organizers are planning to hold a panel next spring to engage the public, as well.

“The spring event will help us continue to spread awareness and engage a variety of groups on issues of ethics in AI and quantum computing,” Nord said.

The workshop was sponsored by the Kavli Foundation in partnership with the Center for Data and Computing at the University of Chicago. Artificial intelligence and quantum information science are two of six initiatives identified as special priority by the Department of Energy Office of Science.

The Kavli Foundation is dedicated to advancing science for the benefit of humanity, promoting public understanding of scientific research, and supporting scientists and their work. The foundation’s mission is implemented through an international program of research institutes, initiatives and symposia in the fields of astrophysics, nanoscience, neuroscience, and theoretical physics, as well as the Kavli Prize and a program in public engagement with science. Visit kavlifoundation.org.

The Chicago Quantum Exchange catalyzes research activity across disciplines and member institutions. It is anchored by the University of Chicago, Argonne National Laboratory, Fermi National Accelerator Laboratory, and the University of Illinois at Urbana-Champaign and includes the University of Wisconsin-Madison, Northwestern University and industry partners. Visit chicagoquantum.org.