From Scientific American, February 2020: Collaborators from eight institutions have come together to turn a mine shaft at Fermilab into the world’s largest atom interferometer — MAGIS-100. The researchers plan to assemble the instrument in 2021 and start harnessing lasers to expand submicroscopic strontium atoms into macroscale “atom waves” soon after. Fermilab scientist Rob Plunkett comments on the mind-boggling experiment.

From MIT Technology Review, Oct. 21, 2019: We’ve seen ripples in space-time only when the universe’s biggest events occur. Now there might be a way to spot them ahead of time. MAGIS-100 is a project designed to see whether shooting frozen atoms with lasers can be used to observe ultrasensitive signals that might be stretching through space-time. If successful, it could help usher in a new era of “atom interferometry” that could reveal some of the secrets of gravitational waves, dark matter, quantum mechanics, and other heady topics.

On Thursday, Oct. 17, Prof. Jason Hogan from Stanford will give a spacial wine and cheese seminar about MAGIS-100, a new Fermilab experiment that will use atom interferometry to probe fundamental physics. MAGIS-100 was recently featured on Fermilab news.  It will be constructed in the NuMI shaft in the coming years. The talk title is “MAGIS-100: fundamental science with atom interferometry at Fermilab” and will take place in one west at 4 pm, Thursday, October 17.