
The 30-ton MicroBooNE neutrino detector is gently lowered into the Liquid-Argon Test Facility at Fermilab on Monday, June 23. The detector will become the centerpiece of the MicroBooNE experiment, which will study ghostly particles called neutrinos. Photo: Fermilab.
On Monday, June 23, the next phase of neutrino physics at Fermilab fell (gently) into place.
The MicroBooNE detector – a 30-ton, 40-foot-long cylindrical metal tank designed to detect ghostly particles called neutrinos – was carefully transported by truck across the U.S. Department of Energy’s Fermilab site, from the warehouse building it was constructed in to the experimental hall three miles away.
The massive detector was then hoisted up with a crane, lowered through the open roof of the building and placed into its permanent home, directly in the path of Fermilab’s beam of neutrinos. There it will become the centerpiece of the MicroBooNE experiment, which will study those elusive particles to crack several big mysteries of the universe.
The MicroBooNE detector has been under construction for nearly two years. The tank contains a 32-foot-long “time projection chamber,” the largest ever built in the United States, equipped with 8,256 delicate gilded wires, which took the MicroBooNE team two months to attach by hand. This machine will allow scientists to further study the properties of neutrinos, particles that may hold the key to understanding many unexplained mysteries of the universe.
“This is a huge day for the MicroBooNE experiment,” said Fermilab’s Regina Rameika, project manager for the MicroBooNE experiment. “We’ve worked hard to create the best scientific instrument that we can. To see it moved into place was a thrill for the entire team.”
The MicroBooNE detector will now be filled with 170 tons of liquid argon, a heavy liquid that will release charged particles when neutrinos interact with it. The detector’s three layers of wires will then capture pictures of these interactions at different points in time and send that information to the experiment’s computers.
Using one of the most sophisticated processing programs ever designed for a neutrino experiment, those computers will sift through the thousands of interactions that will occur every day and create stunning 3-D images of the most interesting ones. The MicroBooNE team will use that data to learn more about how neutrinos change from one type (or “flavor”) to another, and narrow the search for a hypothesized (but as of yet, never observed) fourth type of neutrino.
“The scientific potential of MicroBooNE is really exciting,” said Yale University’s Bonnie Fleming, co-spokesperson for the MicroBooNE experiment. “After a long time spent designing and building the detector, we are thrilled to start taking data later this year.”
MicroBooNE is a cornerstone of Fermilab’s short-baseline neutrino program , which studies neutrinos traveling over shorter distances. (MINOS and NOvA, which send neutrinos through the Earth to Minnesota, are examples of long-baseline experiments.) In its recent report, the Particle Physics Project Prioritization Panel (P5) expressed strong support for the short-baseline neutrino program at Fermilab.
The P5 panel was comprised of members of the high-energy physics community. Their report was commissioned by the High Energy Physics Advisory Panel, which advises both the Department of Energy and the National Science Foundation on funding priorities.
The detector technology used in designing and building MicroBooNE will serve as a prototype for a much larger long-baseline neutrino facility planned for the United States, to be hosted at Fermilab. The P5 report also strongly supports this larger experiment, which will be designed and funded through a global collaboration.
To read the P5 report, visit this link: http://usparticlephysics.org/p5.
Fermilab is America’s premier national laboratory for particle physics and accelerator research. A U.S. Department of Energy Office of Science laboratory, Fermilab is located near Chicago, Illinois, and operated under contract by the Fermi Research Alliance, LLC. Visit Fermilab’s website at www.fnal.gov and follow us on Twitter at @FermilabToday.
The DOE Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.
- The 30-ton MicroBooNE neutrino detector was transported across the Fermilab site on Monday, June 23. The banner on the side reads “MicroBooNE – Driving Nu Physics.” The Greek letter nu (pronounced “new”) stands for subatomic particles called neutrinos. Photo: Fermilab.
- The 30-ton MicroBooNE neutrino detector was transported three miles across the Fermilab site on Monday, June 23. The 40-foot-long detector has been under construction for two years and will be the centerpiece of the MicroBooNE neutrino experiment. Photo: Fermilab.
- The MicroBooNE detector is transported on a truck. Fermilab’s Wilson Hall is in the background. The 30-ton neutrino detector was transported three miles across the Fermilab site on Monday, June 23, and placed in its new home in the Liquid-Argon Test Facility. Photo: Fermilab.
- The massive MicroBooNE neutrino detector is gently lowered into the main cavern of the Liquid-Argon Test Facility at Fermilab on Monday, June 23. The banner on the side reads “MicroBooNE – Driving Nu Physics.” The Greek letter nu stands for neutrinos, the subatomic particles that the experiment will study. Photo: Fermilab.
- The MicroBooNE detector is at rest in its new home, Fermilab’s Liquid-Argon Test Facility. The detector is now in the path of Fermilab’s intense neutrino beam and will begin taking data later this year. Photo: Fermilab.
- The 30-ton MicroBooNE detector in its cradle in the Liquid-Argon Test Facility at Fermilab. The detector, which contains a time projection chamber that includes 8,256 delicate gilded wires, was carefully transported three miles across the Fermilab site and lowered into place with a massive crane on Monday, June 23. Photo: Fermilab.
- The 30-ton MicroBooNE neutrino detector is slowly lowered through the open roof of the Liquid-Argon Test Facility at Fermilab, where it will become the centerpiece of the MicroBooNE experiment. Crews first took the roof of the building off with the massive crane, then lowered the detector into place. Photo: Fermilab.