Standard Model

The unusually large Muon has threatened the Standard Model for decades, but new data parks the particle inside the confines of established physics. The BMW Collaboration’s recently posted research suggests the difference between the muon’s predicted anomalous magnetic moment and that predicted by the Standard Model is not as large as previous findings suggested.

How are cosmology and particle physics connected? Observing the motions of stars and galaxies can reveal the influence of as-yet-undiscovered particles, while studying fundamental particles in the lab can tell us about the birth and evolution of the cosmos.

Peter Higgs, a giant of particle physics, dies at 94

The science world is mourning the loss of British theoretical physicist, Peter Higgs who passed away at the age of 94. He was the namesake of the boson that was discovered in 2012. The Higgs boson was a crucial to the theoretical edifice that physicists built known as the standard model of particles and fields.

The ATLAS collaboration measured the W-boson width at the LHC for the first time. The W-boson width had previously been measured at CERN’s LEP collider and Fermilab’s Tevatron collider. This is the most precise measurement to date made by a single experiment, and—while a bit larger—it is consistent with the Standard-Model prediction to within 2.5 standard deviations.

From Popular Science, August 17, 2023: Breaking the Standard Model would be one of the biggest moments in particle physics history. The Muon g-2 collaboration reported that the muon doesn’t always look like physicists expect it to look, but the collaboration isn’t done. Once they analyze all the remaining data, physicists believe they can make their g minus 2 estimate twice as precise again.