Standard Model

Dark matter is invisible; it’s everywhere; and it doesn’t interact with matter very often. The same is true for neutrinos. So are neutrinos dark matter? Neutrino physicist Kirsty Duffy and neutrino/dark matter researcher Asher Kaboth (Royal Holloway, University of London) break down the most likely dark matter candidates and where neutrinos fit into the mix.

On July 4, 2012, researchers at the CERN laboratory in Europe announced the discovery of the Higgs boson. It was a tremendous triumph for the Standard Model of particle physics and confirmed a prediction made nearly half a century prior. In 2022, we celebrate the 10th anniversary of that momentous discovery.

From NBC News, June 14, 2022: The faster and stronger LHC at CERN, scheduled to restart this summer, is stirring up renewed excitement in the discovery of particles that make up dark matter. While the LHC has been dormant for ten years, it has received upgrades while other accelerators like Fermilab’s Tevatron have made discoveries that point to possible “new physics.”

From PBS Space Time, May 25, 2022: Fermilab scientists spent almost a decade recording collisions in the Tevatron collider and another ten years analyzing data finding the W boson’s mass seems to be 0.01 percent heavier than expected. Now, understanding why the particle has mass puts the current Standard Model to the test.