Author Archive

The BREAD experiment has delivered its first results. The table top axion detection system showed how the concept of BREAD iss inexpensive and did not take up a lot of space. BREAD was developed by Fermilab and University of Chicago scientists and aims to study axions to answer the mystery of dark matter.

The ATLAS collaboration measured the W-boson width at the LHC for the first time. The W-boson width had previously been measured at CERN’s LEP collider and Fermilab’s Tevatron collider. This is the most precise measurement to date made by a single experiment, and—while a bit larger—it is consistent with the Standard-Model prediction to within 2.5 standard deviations.

Neutron stars are like huge natural dark matter detectors and might hold a key to helping us understand elusive dark matter. By observing a cold neutron star, physicists from the ARC Centre of Excellence for Dark Matter Particle Physics, might have vital information about the interactions between dark and regular matter, shedding light on the nature of this elusive substance. Dr. Sandra Robles of Fermilab is part of the collaboration on this research.

A collaboration between the University of Chicago and Fermilab have developed an axion detector called BREAD. It was built to search for dark photon dark matter and the first results showed that BREAD is very sensitive in its frequency range.

Physicists use particle accelerators to replicate the early Universe’s conditions, revealing insights from the Big Bang to the formation of atoms. Data generated in particle physics experiments and theoretical physics can offer a glimpse into the earliest moments of the cosmos.

A collaboration scientists working on the Broadband Reflector Experiment for Axion Detection recently released their first results in the search for dark matter. Although they did not find dark matter, they narrowed the constraints for where it might be and demonstrated a unique approach that may speed up the search for the mysterious substance, at relatively little space and cost.

With the most recent P5 report, particle physicists have come together to chart a course for the next decade which includes focus on the international DUNE experiment taking place at Fermilab and in Lead, South Dakota.

The dream machine

An accelerator known as a muon collider could revolutionize particle physics—if it can be built. The December 2023 P5 report calls for R&D on a muon collider, stating, “This is our muon shot.” A muon collider could fit on the campus of Fermilab, enabling the U.S. to reclaim the lead in the continuing competition for the highest energy collider.