In the news

News highlights featuring Fermilab

831 - 840 of 1527 results

From particle physics to hospitals: The U.S. FDA authorizes the Mechanical Ventilator Milano within the scope of the emergency use authorization for COVID-19 ventilators

    From MVM collaboration, May 5, 2020: The Mechanical Ventilator Milano is an innovative ventilator, conceived and designed by an international collaboration of particle physicists and developed in cooperation with other relevant scientific communities. Its mechanical design is simple, using a small number of parts to facilitate rapid production. Fermilab scientists volunteered their time to design, test and finalize the MVM.

    A long-lost type of dark matter may resolve the biggest disagreement in physics

      From Live Science, April 29, 2020: One of the deepest mysteries in physics could be explained by a long-since vanished form of dark matter. Fermilab scientist Dan Hooper is one of the authors of the new result. If an ancient form of dark matter decayed out of existence, that loss would have decreased the mass of the universe, which would have led to less gravity holding the universe together, which would have affected the speed at which the universe expands — helping explain the disagreement between measurements of the universe’s expansion.

      I freddi occhi di DUNE

        From INFN, April 9, 2020: L’industria di solito non utilizza l’elettronica che opera a temperature criogeniche, perciò i fisici delle particelle hanno dovuto costruirsela da sé. Una collaborazione tra numerosi laboratori nazionali afferenti al Dipartimento dell’Energia, incluso il Fermilab, ha sviluppato prototipi dell’elettronica che verrà alla fine utilizzata nell’esperimento internazionale DUNE – Deep Underground Neutrino Experiment, ospitato dal Fermilab.

        Neutrino asymmetry passes critical threshold

          From Quanta Magazine, April 15, 2020: The first official evidence of a key imbalance between neutrinos and antineutrinos provides one of the best clues for why the universe contains something rather than nothing. Fermilab scientist Debbie Harris comments on the T2K experiment’s latest result. Fermilab’s NOvA experiment and the international Deep Underground Neutrino Experiment, hosted by Fermilab, will also help provide a more precise understanding of the asymmetry.

          Biggest cosmic mystery ‘step closer’ to solution

            From BBC News, April 16, 2020: Stars, galaxies, planets, pretty much everything that makes up our everyday lives owes its existence to a cosmic quirk. The nature of this quirk, which allowed matter to dominate the universe at the expense of antimatter, remains a mystery. Now, results from the T2K experiment in Japan has given strong hints that the CP violation effect could be large for neutrinos. The international Deep Underground Neutrino Experiment, hosted by Fermilab, might detect the effect faster than expected.

            Weird neutrino behavior could explain longstanding antimatter mystery

              From Space.com, April 15, 2020: A new study from the T2K experiment looked hard for signs of CP symmetry violation in neutrinos and came up with some intriguing results. The international Deep Underground Neutrino Experiment, hosted by Fermilab, will provide complementary techniques and measurements that may provide a more definitive answer in the quest for CP violation.

              Skewed neutrino behavior could help explain matter’s dominion over antimatter

                From Science, April 15, 2020: Neutrinos behave differently from their antimatter counterparts, antineutrinos, report physicists on the T2K experiment. The result is far from conclusive, but the asymmetry, known as CP violation, could help explain how the newborn universe generated more matter than antimatter. NOvA spokesperson Patricia Vahle of William & Mary comments on the T2K result and NOvA’s measurements of CP violation. When the international Deep Underground Neutrino Experiment, hosted by Fermilab, comes online, it will be able to make more precise measurements of neutrinos’ behavior.

                Neutrinos may explain why we don’t live in an antimatter universe

                  From New Scientist, April 15, 2020: Differences between matter and antimatter, called CP violation, have been measured in some particles, called quarks, but the level isn’t nearly enough to explain the observed imbalance between matter and antimatter. The T2K collaboration has observed hints that CP violation in neutrinos may be able to make up the difference. DUNE spokesperson Ed Blucher of the University of Chicago comments on the result.