In the news

News highlights featuring Fermilab

831 - 840 of 1519 results

Skewed neutrino behavior could help explain matter’s dominion over antimatter

    From Science, April 15, 2020: Neutrinos behave differently from their antimatter counterparts, antineutrinos, report physicists on the T2K experiment. The result is far from conclusive, but the asymmetry, known as CP violation, could help explain how the newborn universe generated more matter than antimatter. NOvA spokesperson Patricia Vahle of William & Mary comments on the T2K result and NOvA’s measurements of CP violation. When the international Deep Underground Neutrino Experiment, hosted by Fermilab, comes online, it will be able to make more precise measurements of neutrinos’ behavior.

    Neutrinos may explain why we don’t live in an antimatter universe

      From New Scientist, April 15, 2020: Differences between matter and antimatter, called CP violation, have been measured in some particles, called quarks, but the level isn’t nearly enough to explain the observed imbalance between matter and antimatter. The T2K collaboration has observed hints that CP violation in neutrinos may be able to make up the difference. DUNE spokesperson Ed Blucher of the University of Chicago comments on the result.

      Matter-antimatter symmetry violated

        From Nature, April 15, 2020: In a mirror world, antiparticles should behave in the same way as particles. But it emerges that neutrinos, electrons and their more exotic cousins might not obey this expected pattern. Fermilab scientist Jessica Turner and Durham University scientist Silvia Pascoli provide a commentary on T2K’s recent neutrino result, CP violation, and how other neutrino experiments, including the international Deep Underground Neutrino Experiment, hosted by Fermilab, will make more precise measurements of the mysterious neutrino’s behavior.

        Why the Big Bang produced something rather than nothing

          From The New York Times, April 15, 2020: An international team of 500 physicists from 12 countries, known as the T2K collaboration, reported that they had measured a slight but telling difference between neutrinos and their opposites, antineutrinos. Fermilab Deputy Director Joe Lykken comments on the result and how the international Deep Underground Neutrino Experiment, hosted by Fermilab, may be able to make a definitive discovery of CP violation.

          The quest for new physics with the Physics Beyond Colliders program

            From Nature Physics, April 6, 2020: The Physics Beyond Colliders study was launched three years ago to explore the future physics projects below the high-energy frontier, including explorations of the dark sector and precision measurements of strongly interacting processes. The methodology employed to compare the reach of those projects has raised interest in the collider, neutrino and nonaccelerator communities.

            Why do matter particles come in threes? A physics titan weighs in.

              From Quanta Magazine, March 30, 2020: Three progressively heavier copies of each type of matter particle exist, and no one knows why. A new paper by Steven Weinberg takes a stab at explaining the pattern, and summarizes a paper by Fermilab scientists Bogdan Dobrescu and Patrick Fox on the spread of the particles’ masses.

              Quantum computing meets particle physics for LHC data analysis

                From Physics World, April 3, 2020: A collaboration that includes Fermilab scientists is exploring how quantum computing could be used to analyze the vast amount of data produced by experiments on the Large Hadron Collider at CERN. The researchers have shown that a “quantum support vector machine” can help physicists make sense out of the huge amounts of information generated at CERN.

                Astronomers find 139 new minor planets in the outer solar system

                  From Astronomy, March 31, 2020: Astronomers have discovered 139 new minor planets orbiting the Sun beyond Neptune by searching through data from the Dark Energy Survey, which is led by Fermilab. The new method for spotting small worlds is expected to reveal many thousands of distant objects in coming years — meaning these first hundred or so are likely just the tip of the iceberg.