Argonne National Laboratory

The cryomodule from Fermilab is 12 meters (39 feet) long and will start the transport to SLAC on March 19, 2021. Photo: Fermilab

Fermilab gives a sendoff to the final superconducting component for the LCLS-II particle accelerator at SLAC National Accelerator Laboratory in California. LCLS-II will be the world’s brightest and fastest X-ray laser. A partnership of particle accelerator technology, materials science, cryogenics and energy science, LCLS-II exemplifies cross-disciplinary collaboration across DOE national laboratories.

From Berkeley Lab, Feb. 17, 2021: Fermilab is part of a team of national labs that designed, built and fully tested a prototype magnet for today’s and tomorrow’s light sources. These light sources let scientists see things once thought impossible. They can use these visions to create more durable materials, build more efficient batteries and computers, and learn more about the natural world.

From the University of Chicago, Jan. 19, 2021: The Polsky Center for Entrepreneurship and Innovation recently launched the Compass – a first-of-its-kind deep tech accelerator program for early-stage startups and technologies. The Polsky Center will select the most promising startups and technologies out of the University of Chicago, Argonne National Laboratory, and Fermi National Accelerator Laboratory and provide robust resources to help those companies get launched and be investor-ready in six months.

From Bulgarisches Wirtschaftsblatt, Nov. 11, 2020: Während die Wissenschaftler im Fermi National Accelerator Laboratory des US-Energieministeriums auf die mit Spannung erwarteten ersten Ergebnisse des Muon g-2-Experiments warten, setzen die mitarbeitenden Wissenschaftler des Argonne National Laboratory des DOE weiterhin das einzigartige System ein, das das Magnetfeld im Experiment mit beispielloser Präzision abbildet.

From Argonne National Laboratory, Sept. 28, 2020: A research team from four national laboratories, including Fermilab and Argonne, have undertaken work at two Fermilab neutrino experiments — MiniBooNE and NOvA — to construct a model of how neutrinos interact with atomic nuclei. This knowledge is essential to unravel an even bigger mystery: why during their journey through space or matter neutrinos magically morph from one into another of three possible types or flavors.