Sanford Underground Research Facility

From Rapid City Journal, Aug. 6, 2020: Crews have begun installing a rock conveyor over U.S. Highway 85 in Lead, South Dakota, for the Long-Baseline Neutrino Facility. The conveyor will bring 800,000 tons of rock from the 4850 level of Sanford Underground Research Facility and deposit them into an open pit mining area that was excavated by the Homestake Gold Mine in the 1980s, making way for the international Deep Underground Neutrino Experiment, hosted by Fermilab.

From Sanford Underground Research Facility, Aug. 4, 2020: The most publicly visible milestone of the Long-Baseline Neutrino Facility’s pre-excavation work, a conveyor system, now extends over U.S. Highway 85 in Lead, South Dakota. Installation of the conveyor is one of a series of infrastructure strengthening projects undertaken to prepare the Sanford Underground Research Facility for its role as LBNF’s far site. Such projects lay the groundwork for the Deep Underground Neutrino Experiment, the most ambitious particle physics experiment on U.S. soil, hosted by Fermilab.

From Black Hills Pioneer, July 22, 2020: Since late 2019, work has been under way on the Long-Baseline Neutrino Facility conveyor system at the Sanford Underground Research Facility in South Dakota. The system will carry more than 800,000 tons of rock excavated from the site of the international, Fermilab-hosted Deep Underground Neutrino Experiment 4,850-feet below the surface. A major milestone for the project was met on July 20 as the 120-foot section of the truss, which will house the conveyor, was erected above the highway.

Construction workers have carried out the first underground blasting for the Long-Baseline Neutrino Facility, which will provide the space, infrastructure and particle beam for the international Deep Underground Neutrino Experiment. This prep work paves the way for removing more than 800,000 tons of rock to make space for the gigantic DUNE detector a mile underground.

From Gizmodo, May 18, 2020: Neutrino physics is a trek into the unknown, one that the United States physics community has chosen to pursue full-on. A flagship experiment called LBNF/DUNE will lead the search, in pursuit of answers that may take decades or more to find. Fermilab Deputy Director for Research Joe Lykken, DUNE spokesperson Ed Blucher, and DUNE scientists Chang Kee Jung and Elizabeth Worcester talk about how neutrinos will enhance our understanding of the universe.

From News at South Dakota State, Feb. 25, 2020: Two South Dakota State University professors are part of an international team of scientists and engineers working to uncover details about how the universe was formed. Stephen Gent and Greg Michna are using SDSU’s high-performance computing cluster to predict how argon circulates within the particle detectors to be constructed one mile beneath the earth’s surface. The detectors are for Fermilab’s Long-Baseline Neutrino Facility/Deep Underground Neutrino Experiment, which will be installed in the Sanford Underground Research Facility in Lead, South Dakota.

From Tunnels and Tunneling, Feb. 19, 2020: Three of the underground construction components are near completion at the Sanford Underground Research Facility for the far site of Fermilab’s Long-Baseline Neutrino Facility. Work is finishing up on two ore passes that connect the 4850 Level, almost one mile underground, to skips in the Ross Shaft; the Ross Headframe, which must support the skips that bring the rock to the surface; and the tramway tunnel, which will house the conveyor system that will transport excavated rock to its final location.

From Black Hills Pioneer, Feb. 19, 2020: Data from the Deep Underground Neutrino Experiment could help physicists explain the origin of matter, witness a never-before-seen particle decay and better understand how black holes form in space. To prepare for this groundbreaking science, a major construction project is under way to ready the Sanford Underground Research Facility for its role as the far site of Fermilab’s Long-Baseline Neutrino Facility.