qubits

11 - 20 of 33 results

Quantum Research Bits: Is silicon the ideal substrate for qubits? It depends who you ask.

    From Semiconducting Engineering, September 12, 2022: How do you extend the lifespan of qubits? Researchers at the Supercomputing Quantum Materials and Systems Center say silicon limits the lifespan of qubits because of quantum decoherence. Fermilab’s Alexander Romanenko discusses recently published research on how individual sub-components contribute to the decoherence of the qubits. Could sapphire be a better choice for future quantum chips?

    Fermilab engineer scales quantum startup with support from UChicago

      From the Polsky Center, July 26, 2022: Fermilab’s quantum ASIC group leader Shaorui Li founded Lismikro, a new start-up dedicated to developing innovative low-power microchip controllers to solve the hardware bottleneck and unleash the full potential of quantum computers. Lismikro was awarded a $200,000 co-investment from the Polsky Center’s George Shultz Innovation Fund and is capable of scaling the control electronics beyond today’s 100 qubits for superconducting, ion trap, and photonic quantum processors.

      Fermilab engineers develop new control electronics for quantum computers that improve performance, cut costs

      Quantum computing experiments now have a new control and readout electronics option that will significantly improve performance while replacing cumbersome and expensive systems. Developed by a team of engineers at Fermilab in collaboration with the University of Chicago, the Quantum Instrumentation Control Kit, or QICK for short, is easily scalable.