Creating a hypersensitive dark matter detector in a clean lab more than a mile underground is no mean feat in and of itself. Add a closed border and COVID restrictions to the mix, and you have the scenario that Fermilab, SNOLAB and the SENSEI collaboration faced. Undeterred, they found a way to proceed with installation.
SENSEI
A physicist making great advances in particle detector technology, Estrada is recognized by the American Physical Society Division of Particles and Fields for his creation and development of novel applications for CCD technology that probe wide-ranging areas of particle physics, including cosmology, dark matter searches, neutrino detection and quantum imaging.
From Quanta Magazine, Nov. 23, 2020: Physicists plan to leave no stone unturned, checking whether dark matter tickles different types of detectors, nudges starlight, warms planetary cores or even lodges in rocks. Their efforts include the SENSEI and ADMX experiments, in which Fermilab plays a key role.
From APS Physics, Oct. 20, 2020: The SENSEI dark matter detector provides world-leading sensitivity for distinguishing lightweight dark matter from background noise.
In their ongoing search for the mysterious dark matter that makes up 85% of our universe, the particle physics community turns its sights to particles of low mass. The Department of Energy announced that it is providing funding for two Fermilab initiatives to develop experimental designs for experiments that will be highly sensitive to the smallest particles of dark matter. Following the development of the experimental designs, the next phase of funding will be subject to additional reviews and approval.
Postdoc Guillermo Fernandez Moroni is recognized for his outstanding work on the SENSEI experiment at Fermilab. Dark matter experiments are quite sensitive to unwanted background noise, and Moroni found a way to limit this noise for SENSEI, increasing the sensitivity of the experiment by a factor of a thousand, making it the most sensitive of its kind in the world.