ADMX

A man with short gray hair and glasses smiles. He is wearing a black blazer and a black T-shirt that reads "Physics is everything." He is in front of a starry sky. To his right, text that says "Can we find dark matter?" In the lower right-hand corner, an illustration of an atom.

Dark matter remains one of the unsolved mysteries of modern physics. In this video, Fermilab’s Don Lincoln explains two innovative methods whereby Fermilab scientists look for types of dark matter the broader community largely overlooks.

From Quanta Magazine, Nov. 23, 2020: Physicists plan to leave no stone unturned, checking whether dark matter tickles different types of detectors, nudges starlight, warms planetary cores or even lodges in rocks. Their efforts include the SENSEI and ADMX experiments, in which Fermilab plays a key role.

As technology improves, scientists discover new ways to search for theorized dark matter particles called axions. Four decades after they were first theorized, axions are enjoying a moment in the sun, and may even be on the verge of detection, poised to solve two major problems in physics at once.

From Washington University’s The Source, Oct. 23, 2019: The Department of Energy has awarded new funding to boost research on dark matter, the mysterious substance that makes up an astounding 85% of the matter in the universe. The Axion Dark Matter eXperiment is one of the fund’s recipients, and a number of Washington University scientists are collaborating on the project.

In their ongoing search for the mysterious dark matter that makes up 85% of our universe, the particle physics community turns its sights to particles of low mass. The Department of Energy announced that it is providing funding for two Fermilab initiatives to develop experimental designs for experiments that will be highly sensitive to the smallest particles of dark matter. Following the development of the experimental designs, the next phase of funding will be subject to additional reviews and approval.

From Physics Today, June 1, 2019: Fermilab scientist Aaron Chou is an author on this article on how microwave cavity experiments make a quantum leap in the search for the dark matter of the universe. The experimental hunt for a dark matter candidate called the axion has been going on for decades, and today, a number of experiments are putting the squeeze on this hypothesized particle.

The building boom

These international projects, selected during the process to plan the future of U.S. particle physics, are all set to come online within the next 10 years.