
The University of Notre Dame has received a five-year, $6.1 million award from the National Science Foundation to support the nationwide QuarkNet program, which has inspired teachers and students alike for 15 years.
The University of Notre Dame has received a five-year, $6.1 million award from the National Science Foundation to support the nationwide QuarkNet program, which has inspired teachers and students alike for 15 years.
Fermi National Accelerator Laboratory plays a leading role in managing the QuarkNet program, which receives additional funding from the U.S. Department of Energy. QuarkNet uses particle physics experiments to provide valuable research, training, and mentorship opportunities for high school teachers. More than 500 teachers across the United States participate in the program.
Through the QuarkNet program, physicists at Fermilab, Notre Dame and 50 other research institutions will continue to mentor teachers in research experiences, enabling them to teach the basic concepts of introductory physics in a context that high school students find exciting. Faculty, teachers and their students work together as a community of researchers, which not only develops scientific literacy in students, but also attracts young students to careers in science and technology.
“The Notre Dame QuarkNet Center is a great example of the mentoring and training provided by particle physicists at universities and national laboratories across the country,” said Mitchell Wayne, Notre Dame professor of physics and principal investigator of the NSF grant. “It has become a focal point for educational outreach into our community.”
Fermilab and Notre Dame were two of the initial QuarkNet centers. Marge Bardeen, head of the Fermilab Education Office, started the Fermilab center 15 years ago. Her vision was to inspire and educate high school students who would be interested and engaged in particle physics. To reach these students meant reaching out to their teachers and engaging them in research.
“Fermilab and other research institutions can provide an experience that teachers and their students cannot find in other places,” Bardeen said. “They can help develop a broader framework for science. They can show how physicists discover new knowledge and talk about their work.”
One key feature of QuarkNet is the summer research experiences that participating centers offer for teachers and their students. During its first year, each QuarkNet center provides two teachers with eight-week research appointments and develops their expertise as lead teachers. In following years, each center may choose to host a teacher-student team for a research experience. This summer, for example, two teachers and eight students worked on seven different projects with Fermilab scientists, including investigations into dark matter and dark energy.
In the past few years, the reach of QuarkNet has become international, with QuarkNet activities such as cosmic-ray studies and masterclasses now available to teachers and their students around the world. This year, students in twenty-five countries are participating in the International Masterclasses, coordinated by the International Particle Physics Outreach Group. Held at university and laboratory centers, masterclasses are institutes for teams of students who become physicists for a day, analyze real experimental data and discuss results through videoconferences with physicists and peers across the world.
“They are looking at particle events, making determinations, doing counting themselves, coming to their own conclusions,” said Notre Dame’s Kenneth Cecire, who facilitates masterclasses in the United States.
Fermilab technicians have developed a cosmic-ray detector with a data acquisition system that allows high school students to conduct cosmic-ray studies in their classrooms. An e-Lab developed through an NSF grant to Fermilab allows students to upload and analyze cosmic- ray data and publish their results as online posters. QuarkNet offers professional development workshops for teachers to effectively use the detectors and e-Lab with their students. Fermilab has provided 700 cosmic-ray data acquisition systems to schools around the world, and over 1,000 teachers and 2,239 student research groups have e-Lab accounts.
As part of the QuarkNet program, teachers and their students have helped to build elements of the major Fermilab and Large Hadron Collider experiments over the last decade and are working on new detector upgrades. They are able to look at the latest scientific data from the LHC experiments, and use their own particle detectors to conduct measurements of cosmic rays.
During the next five years, the NSF grant will allow the QuarkNet program to expand and begin some new initiatives, including outreach into the Native American community.
“We are delighted to receive this new award and we are really looking forward to the next five years of QuarkNet,” Wayne said.
Fermilab is America’s premier national laboratory for particle physics research. A U.S. Department of Energy Office of Science laboratory, Fermilab is located near Chicago, Illinois, and operated under contract by the Fermi Research Alliance, LLC. Visit Fermilab’s website at http://www.fnal.gov and follow us on Twitter at @FermilabToday.
The DOE Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov.
Project website:
www.darkenergysurvey.org
Fact Sheet:
http://news.fnal.gov/wp-content/uploads/understanding-dark-energy.pdf
Eight billion years ago, rays of light from distant galaxies began their long journey to Earth. That ancient starlight has now found its way to a mountaintop in Chile, where the newly constructed Dark Energy Camera, the most powerful sky-mapping machine ever created, has captured and recorded it for the first time.
That light may hold within it the answer to one of the biggest mysteries in physics – why the expansion of the universe is speeding up.
Scientists in the international Dark Energy Survey collaboration announced this week that the Dark Energy Camera, the product of eight years of planning and construction by scientists, engineers, and technicians on three continents, has achieved first light. The first pictures of the southern sky were taken by the 570-megapixel camera on Sept. 12.
“The achievement of first light through the Dark Energy Camera begins a significant new era in our exploration of the cosmic frontier,” said James Siegrist, associate director of science for high energy physics with the U.S. Department of Energy. “The results of this survey will bring us closer to understanding the mystery of dark energy, and what it means for the universe.”
The Dark Energy Camera was constructed at the U.S. Department of Energy’s (DOE) Fermi National Accelerator Laboratory in Batavia, Illinois, and mounted on the Victor M. Blanco telescope at the National Science Foundation’s Cerro Tololo Inter-American Observatory (CTIO) in Chile, which is the southern branch of the U.S. National Optical Astronomy Observatory (NOAO). With this device, roughly the size of a phone booth, astronomers and physicists will probe the mystery of dark energy, the force they believe is causing the universe to expand faster and faster.
“The Dark Energy Survey will help us understand why the expansion of the universe is accelerating, rather than slowing due to gravity,” said Brenna Flaugher, project manager and scientist at Fermilab. “It is extremely satisfying to see the efforts of all the people involved in this project finally come together.”
The Dark Energy Camera is the most powerful survey instrument of its kind, able to see light from over 100,000 galaxies up to 8 billion light years away in each snapshot. The camera’s array of 62 charged-coupled devices has an unprecedented sensitivity to very red light, and along with the Blanco telescope’s large light-gathering mirror (which spans 13 feet across), will allow scientists from around the world to pursue investigations ranging from studies of asteroids in our own Solar System to the understanding of the origins and the fate of the universe.
“We’re very excited to bring the Dark Energy Camera online and make it available for the astronomical community through NOAO’s open access telescope allocation,” said Chris Smith, director of the Cerro-Tololo Inter-American Observatory. “With it, we provide astronomers from all over the world a powerful new tool to explore the outstanding questions of our time, perhaps the most pressing of which is the nature of dark energy.”
Scientists in the Dark Energy Survey collaboration will use the new camera to carry out the largest galaxy survey ever undertaken, and will use that data to carry out four probes of dark energy, studying galaxy clusters, supernovae, the large-scale clumping of galaxies and weak gravitational lensing. This will be the first time all four of these methods will be possible in a single experiment.
The Dark Energy Survey is expected to begin in December, after the camera is fully tested, and will take advantage of the excellent atmospheric conditions in the Chilean Andes to deliver pictures with the sharpest resolution seen in such a wide-field astronomy survey. In just its first few nights of testing, the camera has already delivered images with excellent and nearly uniform spatial resolution.
Over five years, the survey will create detailed color images of one-eighth of the sky, or 5,000 square degrees, to discover and measure 300 million galaxies, 100,000 galaxy clusters and 4,000 supernovae.
The Dark Energy Survey is supported by funding from the U.S. Department of Energy; the National Science Foundation; funding agencies in the United Kingdom, Spain, Brazil, Germany and Switzerland; and the participating DES institutions.
More information about the Dark Energy Survey, including the list of participating institutions, is available at the project website: www.darkenergysurvey.org.
For a summary of the major components contributed to the Dark Energy Camera by the participating institutions, read these symmetry articles: www.symmetrymagazine.org/cms/?pid=1000880, http://www.symmetrymagazine.org/article/september-2012/the-dark-energy-camera-opens-its-eyes
Released by Fermilab and the National Optical Astronomy Observatory (NOAO) on behalf of the Dark Energy Survey collaboration. NOAO is operated by the Association of Universities for Research in Astronomy (AURA), Inc. under cooperative agreement with the National Science Foundation.
Fermilab is America’s premier national laboratory for particle physics research. A U.S. Department of Energy Office of Science laboratory, Fermilab is located near Chicago, Illinois, and operated under contract by the Fermi Research Alliance, LLC. Visit Fermilab’s website at www.fnal.gov and follow us on Twitter at @FermilabToday.
The DOE Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.
- Zoomed-in image from the Dark Energy Camera of the center of the globular star cluster 47 Tucanae, which lies about 17,000 light years from Earth. Credit: Dark Energy Survey Collaboration
- Zoomed-in image from the Dark Energy Camera of the barred spiral galaxy NGC 1365, in the Fornax cluster of galaxies, which lies about 60 million light years from Earth. Credit: Dark Energy Survey Collaboration
- Zoomed-in image from the Dark Energy Camera of the Fornax cluster of galaxies, which lies about 60 million light years from Earth. Credit: Dark Energy Survey Collaboration
- Full Dark Energy Camera composite image of the globular star cluster 47 Tucanae, which lies about 17,000 light years from Earth. Credit: Dark Energy Survey Collaboration
- Full Dark Energy Camera image of the Fornax cluster of galaxies, which lies about 60 million light years from Earth. The center of the cluster is the clump of galaxies in the upper portion of the image. The prominent galaxy in the lower right of the image is the barred spiral galaxy NGC 1365. Credit: Dark Energy Survey Collaboration
- Full Dark Energy Camera composite image of the Small Magellanic Cloud (a band of greenish stars running from lower left toupper right), a dwarf galaxy that lies about 200,000 light years from Earth, and is a satellite of our Milky Way galaxy. Credit: Dark Energy Survey Collaboration
- The Dark Energy Camera features 62 charged-coupled devices (CCDs), which record a total of 570 megapixels per snapshot. Credit: Fermilab
- The Dark Energy Camera, mounted on the Blanco telescope in Chile. Credit: Dark Energy Survey Collaboration
- The Dark Energy Camera, mounted on the Blanco telescope in Chile. Credit: Dark Energy Survey Collaboration
- Dark Energy Camera telescope simulator at Fermilab. Credit: Fermilab
- Scientists build a prototype of the Dark Energy Camera, which will survey about one-tenth of the sky to measure 300 million galaxies and discover thousands of supernovae. Credit: Fermilab
- A simulation of a photo of galaxy clusters taken by the Dark Energy Camera. A single camera image captures an area 20 times the size of the moon as seen from Earth. Credit: Dark Energy Survey Collaboration
- An artist’s rendering of the Dark Energy Camera inside the frame that supports the camera in the Blanco telescope. Credit: Fermilab/Dark Energy Survey Collaboration
- An artist’s rendering of the 570-megapixel Dark Energy Camera. Credit: Fermilab/DES collaboration
- The Blanco telescope in Chile as seen at nighttime. Credit: T. Abbott and NOAO/AURA/NSF
- The Blanco telescope in Chile as seen from the air. Credit: NOAO/AURA/NSF
- The Blanco telescope in Chile. Credit: T. Abbott and NOAO/AURA/NSF
- The 4 meter Blanco telescope. The green circle marks the location of the prime focus cage where the Dark Energy Camera will be mounted. Credit: CTIO/AURA/NSF
To download the first images captured by the Dark Energy Camera, go to http://www.noao.edu/news/2012/pr1204.php
Live webcast of installation available here:
http://fnal.gov/pub/webcams/nova_webcam/
Today, technicians in Minnesota will begin to position the first block of a detector that will be part of the largest, most advanced neutrino experiment in North America.
The NuMI Off-Axis Neutrino Appearance experiment – NOvA for short – will study the properties of neutrinos, such as their masses, and investigate whether they helped give matter an edge over antimatter after both were created in equal amounts in the big bang. The experiment is on track to begin taking data in 2013.
“This is a significant step toward a greater understanding of neutrinos,” said Marvin Marshak, NOvA laboratory director and director of undergraduate research at the University of Minnesota. “It represents many months of hard work on the part of the whole NOvA collaboration.”
Neutrinos are elementary particles, basic building blocks of matter in the Standard Model of particle physics. They are almost massless, and they interact so rarely with other matter that they can move straight through hundreds of miles of solid rock.
The NOvA experiment will study a beam of neutrinos streaming about 500 miles through the Earth from the U.S. Department of Energy’s Fermi National Accelerator Laboratory near Chicago to a large detector in Ash River, Minnesota. The particles, generated in what will be the most powerful neutrino beam in the world, will make the trip in less than three milliseconds.
Today, crews will use a 750,000-pound pivoter machine to lift the first 417,000-pound block – one of 28 that will make up the detector – and put it in place at the end of the 300-foot-long detector hall. The delicate process may take multiple days.
Each block of the detector measures 51 by 51 by 7 feet and is made up of 384 plastic PVC modules. About 170 students from the University of Minnesota built the modules, stringing them with optical fibers and attaching their endcaps.
Scientists and engineers at the Department of Energy’s Argonne National Laboratory developed the machine that glues modules into blocks. Scientists and engineers at Fermilab developed the pivoter machine and assembly table.
“About a dozen scientists, engineers and technicians from Fermilab and Argonne have been up to Ash River multiple times in the past year to make this thing happen,” said Rick Tesarek, Fermilab physicist and NOvA deputy project leader. “They’re part of a team of over a hundred collaborators who have been actively working on the experiment.”
Once the block is installed, crews will fill it with liquid scintillator. When neutrinos interact with the liquid, they will produce charged particles that will release light, which the optical fiber will detect. The fiber will carry the signal to electronics, which will record the neutrino event.
Neutrinos come in three flavors, each associated with a different elementary particle: electron, muon and tau. Three different types of neutrinos oscillate between these flavors, spending a different fraction of their lives as each flavor.
“Everyone’s been watching to see which experiment will make the next big step in uncovering the properties of neutrinos,” said Mark Messier, Indiana University physicist and co-spokesperson of the NOvA experiment. “The NOvA experiment should be it. It is uniquely positioned to be the first experiment to determine the ordering of the masses of the three neutrinos.”
Officials first broke ground on the NOvA detector facility, a laboratory of the University of Minnesota’s School of Physics and Astronomy, in May 2009. Crews completed the building this spring.
The experiment will use two detectors, a 330-metric-ton near detector at Fermilab and the 14-kiloton far detector at the detector facility close to the U.S.-Canadian border, to look for changes in the neutrino beam as it travels. The far detector is scheduled to begin taking data in 2013 and to be completed in early 2014.
An upgrade of the Fermilab neutrino beam, now in progress during a yearlong accelerator shutdown, will be crucial to the experiment. Fermilab will increase the power of the beam by a factor of two from 320 kilowatts to 700 kilowatts. NOvA experimenters expect eventually to study a sample of about 100 neutrino events collected during six years of operation.
The NOvA experiment is a collaboration of 169 scientists from 19 universities and laboratories in the U.S and another 15 institutions around the world.
Fermilab is America’s premier national laboratory for particle physics research. A U.S. Department of Energy Office of Science laboratory, Fermilab is located near Chicago, Illinois, and operated under contract by the Fermi Research Alliance, LLC. Visit Fermilab’s website at http://www.fnal.gov and follow us on Twitter at @FermilabToday.
The DOE Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov.
Additional information:
- NOvA website: http://www-nova.fnal.gov/
- NOvA: Exploring Neutrino Mysteries:https://youtu.be/Fe4veClYxkE
- On Wednesday, Sept. 5, crews painted the completed first block of the NOvA detector black to prevent light from entering the detector. Photo: William Miller, NOvA installation manager
- Technicians add modules to the first block of the NOvA detector. Photo: Ron Williams, NOvA lead foreman
- Technicians glue modules using a machine developed at Argonne National Laboratory. Photo: William Miller, NOvA installation manager
- The 53-foot-tall pivoter machine, developed at Fermi National Accelerator Laboratory, will move the first block of the NOvA detector carefully down the 300-foot detector hall. Photo: Ron Williams, NOvA lead foreman
- Scientists and engineers at Fermi National Accelerator Laboratory developed the 750,000-pound pivoter machine that will put the blocks of the NOvA detector in place. Photo: Fermilab
- The NOvA detector, located in Ash River, Minn., will study a beam of neutrinos originating 500 miles away at Fermi National Accelerator Laboratory, located near Chicago. Image: Fermilab
The following press release is being issued today by Fermi Research Alliance, LLC, which manages Fermilab for the U.S. Department of Energy.
The Fermi Research Alliance (FRA) Board of Directors, which manages and operates Fermi National Accelerator Laboratory, announced today that Fermilab Director Pier Oddone has decided to retire after eight years at the helm of America’s leading particle physics laboratory. Oddone will continue to serve as Fermilab director until July 1, 2013, while a committee appointed by the FRA Board Chairman conducts an international search for his successor.
Oddone was named in 2005 as Fermilab’s fifth director after serving as deputy director of Lawrence Berkeley National Laboratory. Oddone led Fermilab during a period of remarkable scientific achievement, and laid the foundation for a future of world-leading scientific research at the laboratory . Major discoveries were announced from every aspect of Fermilab’s scientific program, including the experiments at the Tevatron collider, the laboratory’s suite of neutrino experiments and its programs to study dark matter and high-energy cosmic particles.
“During Pier’s eight years as director, Fermilab has made remarkable contributions to the world’s understanding of particle physics,” said FRA Board Chairman and President of the University of Chicago Robert J. Zimmer. “Pier’s leadership has ensured that Fermilab remains the centerpiece of particle physics research in the United States, and that the laboratory’s facilities and resources are focused on groundbreaking discoveries.”
Under Oddone’s direction, Fermilab’s Tevatron experiments zeroed in on the hiding place of the long-sought Higgs boson, discovered a suite of exotic particles and shed new light on the relationship between matter and antimatter. Fermilab completed significant contributions to the accelerator and CMS detector at the Large Hadron Collider in Switzerland, opened a remote operations center for the LHC on the Fermilab site, and played a leading role in the analysis of data leading to the July 4 discovery of a new particle likely to be the Higgs boson.
Fermilab’s neutrino experiments made major contributions to the worldwide quest to understand these elusive particles, including the most precise measurements of the transformations of some types of neutrinos into each other. Laboratory-led projects and programs identified possible sources of the highest-energy cosmic rays to hit Earth’s atmosphere, and led the world in the search for particles of dark matter.
“The scientific discoveries that Pier has overseen, and the new projects now under construction on Fermilab site, are testament to Pier’s vision for advancing particle physics research in the United States,” said DOE Office of Science Director Bill Brinkman. “We commend Pier’s unwavering commitment to excellence in scientific research and laboratory operations.”
Oddone paved the way for the laboratory’s future, overseeing a transition from an era of high-energy collisions with the Tevatron particle accelerator to an era of research with very intense beams of particles. Over the past seven years, Fermilab has:
- developed into a world-leading center for R&D towards future particle accelerators based on superconducting radio-frequency technology;
- begun construction of NOvA, the world’s most advanced neutrino experiment that will begin operating in 2013;
- broke ground on the Illinois Accelerator Research Center, an R&D facility that starting in 2014 will advance breakthroughs in accelerator science and translate them into applications for the nation’s health, wealth and security;
- started developing new facilities for research with beams of muons; and
- expanded international partnerships, signing new agreements with institutions in India and Korea on R&D towards future particle accelerators and detectors.
“Pier has continued and strengthened Fermilab’s strong tradition of scientific excellence,” said Steven Beering, executive chair of the Board of Trustees of Universities Research Association, Inc. “We thank him for his distinguished service to the laboratory and to the scientific community.”
Fermi Research Alliance, LLC operates Fermilab under contract with the U.S. Department of Energy’s Office of Science. FRA is a partnership of the University of Chicago and Universities Research Association, Inc., a consortium of 85 research universities.
Additional information:
- Director Oddone’s message to Fermilab staff
- 2004 press release announcing the appointment of Director Oddone
Editor’s note:
The following US LHC news release was jointly issued by the U.S. Department of Energy’s Fermi National Accelerator Laboratory and Brookhaven National Laboratory. Fermilab serves as the U.S. hub for the nearly 1,000 scientists and engineers from U.S. universities and laboratories who participate in the Compact Muon Solenoid (CMS) experiment. Fermilab hosts the LHC Physics Center (LPC), a center for U.S. scientists who take part in the 3,000-member CMS collaboration. Fermilab houses a Remote Operations Center for the CMS experiment, allowing scientists to take shifts monitoring the CMS detector from the United States. Fermilab scientists, engineers and technicians made significant contributions to the design and construction of both the LHC and the CMS detector and are working on upgrades to both machines. About 120 Fermilab scientists now contribute to the operation of the CMS detector and to analysis of data from the CMS experiment. Fermilab is a Tier-1 computing center; it is one of 11 computing centers in the world that manages LHC data after initial processing. Fermilab provides about a quarter of the CMS experiment’s computing power. “Today’s announcement is the result of tireless work by an international collaboration of thousands,” said Fermilab Director Pier Oddone. “We’re proud of the many contributions that scientists, engineers and students from Fermilab have made to the LHC.”
Physicists on experiments at the Large Hadron Collider announced today that they have observed a new particle. Whether the particle has the properties of the predicted Higgs boson remains to be seen.
Hundreds of scientists and graduate students from American institutions have played important roles in the search for the Higgs at the LHC. More than 1,700 people from U.S. institutions–including 89 American universities and seven U.S. Department of Energy (DOE) national laboratories–helped design, build and operate the LHC accelerator and its four particle detectors. The United States, through DOE’s Office of Science and the National Science Foundation, provides support for research and detector operations at the LHC and also supplies computing for the ATLAS and CMS experiments.
The results announced today are labeled preliminary. They are based on data collected in 2011 and 2012, with the 2012 data still under analysis. A more complete picture of today’s observations will emerge later this year after the LHC provides the experiments with more data.
The new particle is in the mass region around 125-126 GeV. Publication of the analyses shown today is expected around the end of July.
“I congratulate the thousands of scientists around the globe for their outstanding work in searching for the Higgs boson,” said U.S. Secretary of Energy Steven Chu. “Today’s announcement on the latest results of this search shows the benefits of sustained investments in basic science by governments around the world. Scientists have been looking for the Higgs particle for more than two decades; these results help validate the Standard Model used by scientists to explain the nature of matter.”
The CMS and ATLAS experiments in December announced seeing tantalizing hints of a new particle in their hunt for the Higgs, the missing piece in the Standard Model of particle physics. Since resuming data-taking in March 2012, the CMS and ATLAS experiments have more than doubled their collected data. The statistical significance of the earlier hints has grown.
“What has been announced today could not have been accomplished without the cooperation of scientists and nations throughout the world in seeking an understanding of the fundamental laws of nature,” said Ed Seidel, NSF’s assistant director for the Mathematical and Physical Sciences. “If the particle announced today at CERN is confirmed to be the Higgs boson, this represents a keystone in our knowledge of the elementary forces and particles that exist in our universe.”
Scientists on experiments at the LHC announced their latest results at a seminar at the home of the LHC, the CERN particle physics laboratory on the border of Switzerland and France. Physicists from across the United States gathered at laboratories and universities in the middle of the night to watch a live-stream of the seminar online. The vast majority of U.S. scientists participate in the LHC experiments from their home institutions, remotely accessing and analyzing the data through high-capacity networks and grid computing.
Scientists will give more detailed presentations about the results this week at the biannual International Conference on High Energy Physics, held this year in Melbourne, Australia.
The Standard Model of particle physics has proven to explain correctly the elementary particles and forces of nature through more than four decades of experimental tests. But it cannot, without the Higgs boson, explain how most of these particles acquire their mass, a key ingredient in the formation of our universe.
Scientists proposed in 1964 the existence of a new particle, now known as the Higgs boson, whose coupling with other particles would determine their mass. Experiments at the LEP collider at CERN and the Tevatron collider at the Department of Energy’s Fermilab have searched for the Higgs boson, but it has eluded discovery. Only now, after decades of developments in accelerator and detector technology and computing–not to mention advancements in the understanding of the rest of the Standard Model–are scientists approaching the moment of knowing whether the Higgs was the right solution to this problem.
“What we are observing is very likely a new particle with very large mass that would have to be a boson,” said University of California Santa Barbara physicist Joe Incandela, spokesperson of the CMS experiment. “This is potentially an historic and very profound step forward in our understanding of the underlying structure of our universe. ”
When protons collide in the Large Hadron Collider, their energy can convert into mass, often creating short-lived particles. These particles quickly decay into pairs of lighter, more stable particles that scientists can record with their detectors.
Theoretical physicists have predicted the rate at which the Higgs boson will be produced in high-energy proton-proton collisions at the LHC and also how it decays into certain combinations of observable particles. Experimental physicists at the ATLAS and CMS experiments have been studying the collisions and have observed a new particle. They will need to collect more data and run further analysis to determine its properties.
“If the new particle is determined to be the Higgs, attention will turn to a new set of important questions,” said University of California Irvine physicist Andy Lankford, deputy spokesperson of ATLAS. “Is this a Standard Model Higgs, or is it a variant that indicates new physics and other new particles?”
Discovery of the Higgs – or another new particle – would represent only the first step into a new realm of understanding of the world around us.
Background:
Information about the US participation in the LHC is available at http://www.uslhc.us. Follow US LHC on Twitter at http://twitter.com/uslhc.
Fermilab is America’s premier national laboratory for particle physics research. A U.S. Department of Energy Office of Science laboratory, Fermilab is located near Chicago, Illinois and operated under contract by the Fermi Research Alliance, LLC. Visit Fermilab’s website at http://www.fnal.gov and follow us on Twitter at @FermilabToday.
Brookhaven National Laboratory is operated and managed for DOE’s Office of Science by Brookhaven Science Associates and Battelle. Visit Brookhaven Lab’s electronic newsroom for links, news archives, graphics, and more: http://www.bnl.gov/newsroom.
The DOE Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov.
The National Science Foundation focuses its LHC support on funding the activities of U.S. university scientists and students on the ATLAS, CMS and LHCb detectors, as well as promoting the development of advanced computing innovations essential to address the data challenges posed by the LHC. For more information, please visit http://www.nsf.gov/.
CERN, the European Organization for Nuclear Research, is the world’s leading laboratory for particle physics. It has its headquarters in Geneva. At present, its Member States are Austria, Belgium, Bulgaria, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Italy, the Netherlands, Norway, Poland, Portugal, Slovakia, Spain, Sweden, Switzerland and the United Kingdom. Romania is a candidate for accession. Israel and Serbia are Associate Members in the pre-stage to Membership. India, Japan, the Russian Federation, the United States of America, Turkey, the European Commission and UNESCO have Observer status.
Fact sheets, images, graphics and videos:
Illustration: Standard Model particles
Med res:
http://www-visualmedia.fnal.gov/VMS_Site/gallery/stillphotos/2005/0400/05-0440-01D.jpg
High res: http://www-visualmedia.fnal.gov/VMS_Site/gallery/stillphotos/2005/0400/05-0440-01D.hr.jpg
Photo: Remote Operations Center at Fermilab
Med-res http://www-visualmedia.fnal.gov/VMS_Site/gallery/stillphotos/2011/0000/11-0009-08D.jpg
High-res http://www-visualmedia.fnal.gov/VMS_Site/gallery/stillphotos/2011/0000/11-0009-08D.hr.jpg
Video: What is a Higgs boson?
http://www.youtube.com/user/fermilab#p/u/3/RIg1Vh7uPyw
Video: How do we search for Higgs bosons?
http://www.youtube.com/user/fermilab#p/u/0/1GrqMCz_vnA
Fact sheet: Frequently Asked Questions about the Higgs boson:
http://news.fnal.gov/wp-content/uploads/Higgs_Boson_FAQ_July2012.pdf
Definitions of important terms:
http://www.symmetrymagazine.org/cms/?pid=1000253
Photos in the CERN photo archive:
After more than 10 years of gathering and analyzing data produced by the U.S. Department of Energy’s Tevatron collider, scientists from the CDF and DZero collaborations have found their strongest indication to date for the long-sought Higgs particle. Squeezing the last bit of information out of 500 trillion collisions produced by the Tevatron for each experiment since March 2001, the final analysis of the data does not settle the question of whether the Higgs particle exists, but gets closer to an answer. The Tevatron scientists unveiled their latest results on July 2, two days before the highly anticipated announcement of the latest Higgs-search results from the Large Hadron Collider in Europe.
“The Tevatron experiments accomplished the goals that we had set with this data sample,” said Fermilab’s Rob Roser, cospokesperson for the CDF experiment at DOE’s Fermi National Accelerator Laboratory. “Our data strongly point toward the existence of the Higgs boson, but it will take results from the experiments at the Large Hadron Collider in Europe to establish a discovery.”
Scientists of the CDF and DZero collider experiments at the Tevatron received a round of rousing applause from hundreds of colleagues when they presented their results at a scientific seminar at Fermilab. The Large Hadron Collider results will be announced at a scientific seminar at 2 a.m. CDT on July 4 at the CERN particle physics laboratory in Geneva, Switzerland.
“It is a real cliffhanger,” said DZero co-spokesperson Gregorio Bernardi, physicist at the Laboratory of Nuclear and High Energy Physics, or LPNHE, at the University of Paris VI & VII. “We know exactly what signal we are looking for in our data, and we see strong indications of the production and decay of Higgs bosons in a crucial decay mode with a pair of bottom quarks, which is difficult to observe at the LHC. We are very excited about it.”
The Higgs particle is named after Scottish physicist Peter Higgs, who among other physicists in the 1960s helped develop the theoretical model that explains why some particles have mass and others don’t, a major step toward understanding the origin of mass. The model predicts the existence of a new particle, which has eluded experimental detection ever since. Only high-energy particle colliders such as the Tevatron, which was shut down in September 2011, and the Large Hadron Collider, which produced its first collisions in November 2009, have the chance to produce the Higgs particle. About 1,700 scientists from U.S. institutions, including Fermilab, are working on the LHC experiments.
The Tevatron results indicate that the Higgs particle, if it exists, has a mass between 115 and 135 GeV/c2, or about 130 times the mass of the proton.
“During its life, the Tevatron must have produced thousands of Higgs particles, if they actually exist, and it’s up to us to try to find them in the data we have collected,” said Luciano Ristori, co-spokesperson of the CDF experiment and physicist at Fermilab and the Italian Istituto Nazionale di Fisica Nucleare (INFN) . “We have developed sophisticated simulation and analysis programs to identify Higgs-like patterns. Still, it is easier to look for a friend’s face in a sports stadium filled with 100,000 people than to search for a Higgs-like event among trillions of collisions.”
The final Tevatron results corroborate the Higgs search results that scientists from the Tevatron and the LHC presented at physics conferences in March 2012.
The search for the Higgs particle at the Tevatron focuses on a different decay mode than the search at the LHC. According to the theoretical framework known as the Standard Model of Particles, Higgs bosons can decay in many different ways. Just as a vending machine might return the same amount of change using different combinations of coins, the Higgs can decay into different combinations of particles. At the LHC, the experiments can most easily observe the existence of a Higgs particle by searching for its decay into two energetic photons. At the Tevatron, experiments most easily see the decay of a Higgs particle into a pair of bottom quarks.
Tevatron scientists found that the observed Higgs signal in the combined CDF and DZero data in the bottom-quark decay mode has a statistical significance of 2.9 sigma. This means there is only a 1-in-550 chance that the signal is due to a statistical fluctuation.
“We achieved a critical step in the search for the Higgs boson,” said Dmitri Denisov, DZero cospokesperson and physicist at Fermilab. “While 5-sigma significance is required for a discovery, it seems unlikely that the Tevatron collisions mimicked a Higgs signal. Nobody expected the Tevatron to get this far when it was built in the 1980s.”
The Tevatron is one of eight particle accelerators and storage rings on the Fermilab site. The largest, operational accelerator at Fermilab now is the 2-mile-circumference Main Injector, which provides particles for the laboratory’s neutrino and muon research programs.
The CDF and DZero collaborations submitted their joint Higgs search results to the electronic preprint archive arXiv.org. The paper also is available at:
http://tevnphwg.fnal.gov/results/SM_Higgs_Summer_12/
Read frequently asked questions about the Higgs boson.
- After more than 10 years of gathering and analyzing data produced by the U.S. Department of Energy’s Tevatron collider, scientists from the CDF and DZero experiments have found their strongest indication to date for the long-sought Higgs particle. The Tevatron results indicate that the Higgs particle, if it exists, has a mass between 115 and 135 GeV/c2, or about 130 times the mass of the proton.
- The 4-mile-in-circumference Tevatron accelerator, shut down in September 2011, is one of eight particle accelerators and storage rings at the Department of Energy’s Fermilab. It used superconducting magnets to propel protons and antiprotons to nearly the speed of light. In the foreground is the 2-mile Main Injector accelerator, which powers Fermilab’s neutrino and muon research programs.
- The Tevatron typically produced about 10 million proton-antiproton collisions per second. Each collision produced hundreds of particles. The CDF and DZero experiments recorded about 200 collisions per second for further analysis.
- The three-story, 6,000-ton CDF detector recorded snapshots of the particles that emerge when protons and antiprotons collide.
- Scientists measured the energy, momentum and electric charges of subatomic particles using a three-story assembly of sub detectors wrapped around DZero’s collision area like the layers of an onion.

Fermilab scientist Don Lincoln describes the concept of how the search for the Higgs boson is accomplished.
Notes to the editors:
CDF is an international experiment of 430 physicists from 58 institutions in 15 countries . DZero is an international experiment conducted by 446 physicists from 82 institutions in 18 countries. Funding for the CDF and DZero experiments comes from DOE’s Office of Science, the National Science Foundation, and a number of international funding agencies.
CDF collaborating institutions are at http://www-cdf.fnal.gov/collaboration/index.html
DZero collaborating institutions are at http://www-d0.fnal.gov/ib/Institutions.html
Fermilab is America’s premier national laboratory for particle physics research. A U.S. Department of Energy Office of Science laboratory, Fermilab is located near Chicago, Illinois and operated under contract by the Fermi Research Alliance, LLC. Visit Fermilab’s website at http://www.fnal.gov and follow us on Twitter at @FermilabToday.
The DOE Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov.
Our galaxy, the Milky Way, is a large spiral galaxy surrounded by dozens of smaller satellite galaxies. Scientists have long theorized that occasionally these satellites will pass through the disk of the Milky Way, perturbing both the satellite and the disk. A team of astronomers from Canada and the United States have discovered what may well be the smoking gun of such an encounter, one that occurred close to our position in the galaxy and relatively recently, at least in the cosmological sense.
“We have found evidence that our Milky Way had an encounter with a small galaxy or massive dark matter structure perhaps as recently as 100 million years ago,” said Larry Widrow, professor at Queen’s University in Canada. “We clearly observe unexpected differences in the Milky Way’s stellar distribution above and below the Galaxy’s midplane that have the appearance of a vertical wave — something that nobody has seen before.”
The discovery is based on observations of some 300,000 nearby Milky Way stars by the Sloan Digital Sky Survey. Stars in the disk of the Milky Way move up and down at a speed of about 20-30 kilometers per second while orbiting the center of the galaxy at a brisk 220 kilometers per second. Widrow and his four collaborators from the University of Kentucky, the University of Chicago and Fermi National Accelerator Laboratory have found that the positions and motions of these nearby stars weren’t quite as regular as previously thought.
“Our part of the Milky Way is ringing like a bell,” said Brian Yanny, of the Department of Energy’s Fermilab. “But we have not been able to identify the celestial object that passed through the Milky Way. It could have been one of the small satellite galaxies that move around the center of our galaxy, or an invisible structure such as a dark matter halo.”
Adds Susan Gardner, professor of physics at the University of Kentucky: “The perturbation need not have been a single isolated event in the past, and it may even be ongoing. Additional observations may well clarify its origin.”
When the collaboration started analyzing the SDSS data on the Milky Way, they noticed a small but statistically significant difference in the distribution of stars north and south of the Milky Way’s midplane. For more than a year, the team members explored various explanations of this north-south asymmetry, such as the effect of interstellar dust on distance determinations and the way the stars surveyed were selected. When those attempts failed, they began to explore the alternative explanation that the data was telling them something about recent events in the history of the Galaxy.
The scientists used computer simulations to explore what would happen if a satellite galaxy or dark matter structure passed through the disk of the Milky Way. The simulations indicate that over the next 100 million years or so, our galaxy will “stop ringing:” the north-south asymmetry will disappear and the vertical motions of stars in the solar neighborhood will revert back to their equilibrium orbits — unless we get hit again.
The Milky Way is more than 9 billion years old with about 100 billion stars and total mass more than 300 billion times that of the sun. Most of the mass in and around the Milky Way is in the form of dark matter.
Scientists know of more than 20 visible satellite galaxies that circle the center of the Milky Way, with masses ranging from one million to one billion solar masses. There may also be invisible satellites made of dark matter. (There is six times as much dark matter in the universe as ordinary, visible matter.) Astronomers’ computer simulations have found that this invisible matter formed hundreds of massive structures that move around our Milky Way.
Because of their abundance, these dark matter satellites are more likely than the visible satellite galaxies to cut through the Milky Way’s midplane and cause vertical waves.
“Future astronomical programs, such as the space-based Gaia Mission, will be able to map out the vertical perturbations in our galaxy in unprecedented detail,” Widrow said. “That will offer a strong test of our findings.”
The results have been published in The Astrophysical Journal Letters:
http://iopscience.iop.org/2041-8205/750/2/L41/pdf/2041-8205_750_2_L41.pdf
Every day researchers add another sea of data to an ocean of knowledge on the world around us — billions on top of billions of measurements, images and observations of the tiniest subatomic particles up to the movement of planets and stars.
“Making sense of that — simulating, mapping, analyzing — this is how researchers work these days,” said Miron Livny, computer sciences professor at the University of Wisconsin–Madison. “More and more researchers need more and more computing power to support that work.”
To that end, the Department of Energy Office of Science and the National Science Foundation have committed up to $27 million to Open Science Grid (OSG), a nine-member partnership extending the reach of distributed high-throughput computing (DHTC) capabilities.
Distributed computing musters the power of a network of machines that reside at different institutions to make the best use of all available processing and storage capacity, giving scientists the muscle of a supercomputer that may otherwise be out of reach.
Expanded over the last six years to include more than 80 sites contributing users and data storage and processing capacity, OSG now delivers more than 2 million computing hours and moves about a third of a petabyte of data on a daily basis.
“The commitment from the two agencies will take the capabilities and culture we’ve developed to more campuses throughout the United States,” said Livny, OSG’s principal investigator. “It is about advancing the state of the art to support education and research in more science domains and improve our ability to handle more data.”
The OSG Consortium bridges organizational boundaries, working directly with faculty, students and system administrators at campuses across the nation, as well as large multi-national scientific collaborations such as the Large Hadron Collider at the European Center for Nuclear Research.
“Our close partnerships allow us to build on existing experience in working with and processing Big Data and the advanced networks needed to transport the massive datasets of the future,” said Michael Ernst, an OSG co-principal investigator who directs the Brookhaven National Laboratory RHIC/ATLAS Computing Facility and coordinates computing activities across the United States for ATLAS, one of the LHC’s largest particle physics experiments.
“Moving forward, the OSG will continue to bring these principles and technologies to the benefit of new research communities, and also expand its services, integrating networks, data and ever more complex user workflows,” said Lothar Bauerdick, OSG executive director and head of the U.S. LHC Compact Muon Solenoid experiment software and computing project.
OSG, a full partner in the NSF Extreme Digital program and a member of the XSEDE federation, will field new tools for distributed computing to facilitate sharing of computational resources both on and between campuses.
“The OSG has been developing the Virtual Data Toolkit for over 10 years,” said Frank Würthwein, an OSG co-principal investigator and physics professor at the University of California–San Diego. “This software service acts as an anchor for the DHTC community, supporting components that researchers need but are no longer supported elsewhere. Over the next five years, the OSG software services will expand into new, more community-specific, integrated software solutions via the VDT.”
The DOE Office of Science portion of the funding—up to $8.2 million — will support distributed computing efforts based at DOE national laboratories that make masses of data from experiments at the LHC available to U.S. researchers at their home institutions. The balance of the funding, contributed by NSF, will be used to promote distributed computing resources at U.S. universities.
Under the new award, nine institutions will receive funding: Brookhaven National Laboratory, Fermi National Accelerator Laboratory, University of Chicago, University of Wisconsin Madison, Indiana University, University of California San Diego, University of Illinois at Urbana-Champaign, University of Nebraska, and the Information Sciences Institute at the University of Southern California.
“The members of the OSG Consortium are fully committed to collaborating over the next five years to make this project a success,” said Ruth Pordes, chair of the OSG Council and the Fermilab Computing Sector associate head for Grids. “By working together, the OSG project and the scientists who use the OSG will be able to achieve great things.”
Batavia, Illinois—Fermi National Accelerator Laboratory welcomes the public to view its herd of American bison, commonly known as buffalo. Five calves have been born in the past few weeks, increasing the herd size to 25. Visitors, including families with young children, can enter the Fermilab site through its Pine Street entrance in Batavia or the Batavia Road entrance in Warrenville. Admission is free, but a valid photo ID is necessary to enter the site. Summer hours are from 8 a.m. to 8 p.m., seven days a week.
Fermilab’s first director, Robert Wilson, established the bison herd in 1969 as a symbol of the history of the Midwestern prairie and the laboratory’s pioneering research at the frontiers of particle physics. The herd remains a major attraction for families and wildlife enthusiasts. Today, the Fermilab site also boasts 1,100 acres of reconstructed tall-grass prairie as well as seven particle accelerators. The U.S. Department of Energy designated the 6,800-acre Fermilab site a National Environmental Research Park in 1989.
Visitors can learn more about nature at Fermilab by hiking the Interpretive Prairie Trail, a half-mile-long trail located near the Pine Street entrance. The Leon Lederman Science Education Center offers exhibits on the prairie and hands-on physics displays. The Lederman Center hours are Monday-Friday from 8:30 a.m. to 4:30 p.m. and Saturdays from 9 a.m. to 3 p.m.
For up-to-date information for visitors, please visit www.fnal.gov or call (630) 840-3351.
To learn more about Fermilab’s bison herd, please visit our website at www.fnal.gov/pub/about/campus/ecology/wildlife/bison.html.
Fermilab is America’s premier national laboratory for particle physics research. A U.S. Department of Energy Office of Science laboratory, Fermilab is located near Chicago, Illinois and operated under contract by the Fermi Research Alliance, LLC. Visit Fermilab’s website at http://www.fnal.gov and follow us on Twitter at @FermilabToday.
The DOE Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov.
- Fermilab welcomes the public to view its herd of American bison, commonly known as buffalo. The herd grazes on a pasture half a mile from Wilson Hall, Fermilab’s 16-story administrative building. Photo: Fermilab
- Fermilab’s first director, Robert Wilson, established the bison herd in 1969 as a symbol of the history of the Midwestern prairie and the laboratory’s pioneering research at the frontiers of particle physics. Photo: Fermilab
- North American bison can reach a height of more than five feet and a weight of 2,500 pounds. They can run at a speed of more than 30 miles an hour. Photo: Fermilab
- Buffalo babies are usually born in spring, after a gestation of nine months. Photo: Fermilab
Batavia, Illinois—Scientists from the MINOS experiment at the Department of Energy’s Fermi National Accelerator Laboratory have revealed the world’s most precise measurement of a key parameter that governs the transformation of one type of neutrino to another. The results confirm that neutrinos and their antimatter counterparts, antineutrinos, have similar masses as predicted by most commonly accepted theories that explain how the subatomic world works.
MINOS caused a jolt in the physics world in 2010 when it announced that a measurement of this parameter, called delta m squared, showed a surprisingly large difference between the masses of neutrinos and antineutrinos. A subsequent 2011 measurement with increased statistics appeared to bring the neutrino and antineutrino masses closer in sync. With twice as much antineutrino data collected since its 2011 result, scientists confirm that the gap has closed. This upholds predictions and provides crucial information for many other neutrino experiments around the globe.
The new measurement is one of several announced this week by the MINOS experiment at the Neutrino 2012 conference in Kyoto, Japan. These are the final results from the first phase of the MINOS experiment.
“At the end of its initial seven-year run, MINOS has proven that it has been an incredibly successful long-baseline neutrino experiment,” said Fermilab’s Rob Plunkett, MINOS co-spokesperson. “We look forward to the next phase, when we will search for a new type of neutrino.”
MINOS scientists also announced this week their latest measurement of the search for a rare phenomenon, the transformation of muon neutrinos into electron neutrinos. The Daya Bay experiment in China and the RENO experiment in Korea made headlines earlier this year with their measurements of this transformation, observed in neutrinos generated by nuclear reactors.
To measure the transformation of one type of neutrino to another, the MINOS experiment sends a beam of muon neutrinos 450 miles (735 kilometers) through the earth from the Main Injector accelerator at Fermilab to a 5,000-ton neutrino detector located half a mile underground in the Soudan Underground Laboratory in northern Minnesota. The experiment uses two almost identical detectors: the detector at Fermilab is used to check the purity of the muon neutrino beam, and the detector at Soudan looks for electron and muon neutrinos. The neutrinos’ trip from Fermilab to Soudan takes about 2.5 milliseconds, giving the neutrinos enough time to change their identities.
With its full data set collected, MINOS recorded a total of 21 electron-neutrino-like events on top of a background of 79. This represents 40% more data than its 2011 measurement of this transformation. The larger data set allowed MINOS scientists to improve their measurement of a parameter that describes this transformation, called sin22θ13. The new measurement remains consistent with the experiment’s previous measurements and provides an important clue to understanding the puzzle of neutrinos – how they transform from one type to another, and which of the three neutrino types is the most massive.
Because MINOS uses different types of neutrinos than those produced by nuclear reactors, and compared to the Japanese experiment T2K has its two detectors significantly farther apart, its measurements of the transformation of muon to electron neutrinos are sensitive to different effects than other worldwide experiments. In particular, depending on how nature has chosen to order the neutrino masses, MINOS measurements of the parameter sin22θ13 could be different from those made by T2K.
“The results from MINOS have pushed the endeavor into the next phase: now we start to look for the mass ordering of neutrinos,” said University College London Professor Jenny Thomas, co-spokesperson for the MINOS experiment. “Fermilab will lead this endeavor with its NOvA experiment that will start next year.”
In 2013 the upgraded Fermilab accelerator complex will send an even more intense and higher-energy beam of muon neutrinos to two experiments in Northern Minnesota: the brand-new NOvA experiment and the second phase of MINOS. In its next phase, MINOS will focus on the hunt for a fourth type of neutrino. Hints of a fourth type have been observed in two previous experiments.
The MINOS experiment involves more than 140 scientists, engineers, technical specialists and students from 30 institutions, including universities and national laboratories, in five countries: Brazil, Greece, Poland, the United Kingdom and the United States. Funding comes from: the U.S. Department of Energy’s Office of Science; the U.K.’s Science and Technology Facilities Council; the U.S. National Science Foundation; the University of Minnesota, which operates the Soudan Underground Laboratory; Brazil’s Foundation for Research Support of the State of São Paulo (FAPESP) and National Council of Scientific and Technological Development (CNPq) and the University of Athens in Greece.
Fermilab is America’s premier national laboratory for particle physics research. A U.S. Department of Energy Office of Science laboratory, Fermilab is located near Chicago, Illinois and operated under contract by the Fermi Research Alliance, LLC. Visit Fermilab’s website at http://www.fnal.gov and follow us on Twitter at @FermilabToday.
The DOE Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov.
- This graph shows the parameters for muon neutrino mixing. The blue curve shows the latest MINOS result for the boundary of the region of allowed values for the mixing parameters. The MINOS result is compared with measurements from other experiments (red, gray, green).The blue star is the set of parameters preferred by the MINOS data, specifically a delta m squared of 2.39×10-3 ev2 and a value for sin2 (2theta) of 0.96. The new MINOS result uses all neutrino beam and antineutrino beam data from the NuMI beamline and also includes data from atmospheric neutrinos collected at the MINOS detector.
- The blue and red regions in both plots show the areas allowed by MINOS for the parameters of electron-neutrino appearance. The top plot shows the MINOS measurement for one ordering of neutrino masses; the bottom plot shows the same measurement assuming the other mass ordering. The vertical axis shows allowed values of an unknown parameter that controls how much neutrinos and antineutrinos show different behavior in this process.
- Scientists know that there exist three types of neutrinos and three types of antineutrinos. Cosmological observations and laboratory-based experiments indicate that the masses of these particles must be extremely small: Each neutrino and antineutrino must weigh less than a millionth of the weight of an electron.
- Neutrinos, ghost-like particles that rarely interact with matter, travel 450 miles straight through the earth from Fermilab to Soudan — no tunnel needed. The Main Injector Neutrino Oscillation Search (MINOS) experiment studies the neutrino beam using two detectors. The MINOS near detector, located at Fermilab, records the composition of the neutrino beam as it leaves the Fermilab site. The MINOS far detector, located in Minnesota, half a mile underground, again analyzes the neutrino beam. This allows scientists to directly study the oscillation of muon neutrinos into electron neutrinos or tau neutrinos under laboratory conditions.
- The MINOS far detector is located in a cavern half a mile underground in the Soudan Underground Laboratory, Minnesota. The 100-foot-long MINOS far detector consists of 486 massive octagonal planes, lined up like the slices of a loaf of bread. Each plane consists of a sheet of steel about 25 feet high and one inch thick, with the last one visible in the photo. The whole detector weighs 6,000 tons. Since March 2005, the far detector has recorded neutrinos from a beam produced at Fermilab. The MINOS collaboration records about 1,000 neutrinos per year.
- The 1,000-ton MINOS near detector sits 350 feet underground at Fermilab. The detector consists of 282 octagonal-shaped detector planes, each weighing more than a pickup truck. Scientists use the near detector to verify the intensity and purity of the muon neutrino beam leaving the Fermilab site. Photo: Peter Ginter
- Fermilab completed the construction and testing of the Neutrino at the Main Injector (NuMI) beam line in early 2005. Protons from Fermilab’s Main Injector accelerator (left) travel 1,000 feet down the beam line, smash into a graphite target and create muon neutrinos. The neutrinos traverse the MINOS near detector, located at the far end of the NuMI complex, and travel straight through the earth to a former iron mine in Soudan, Minnesota, where they cross the MINOS far detector. Some of the neutrinos arrive as electron neutrinos or tau neutrinos.
- When operating at highest intensity, the NuMI beam line transports a package of 35,000 billion protons every two seconds to a graphite target. The target converts the protons into bursts of particles with exotic names such as kaons and pions. Like a beam of light emerging from a flashlight, the particles form a wide cone when leaving the target. A set of two special lenses, called horns (photo), is the key instrument to focus the beam and send it in the right direction. The beam particles decay and produce muon neutrinos, which travel in the same direction. Photo: Peter Ginter
- More than 140 scientists, engineers, technical specialists and students from Brazil, Greece, Poland, the United Kingdom and the United States are involved in the MINOS experiment. This photo shows some of them posing for a group photo at Fermilab, with the 16-story Wilson Hall and the spiral-shaped MINOS service building in the background.
- Far view The University of Minnesota Foundation commissioned a mural for the MINOS cavern at the Soudan Underground Laboratory, painted onto the rock wall, 59 feet wide by 25 feet high. The mural contains images of scientists such as Enrico Fermi and Wolfgang Pauli, Wilson Hall at Fermilab, George Shultz, a key figure in the history of Minnesota mining, and some surprises. A description of the mural, painted by Minneapolis artist Joe Giannetti, is available here.