KOTA-TV, Feb. 14, 2024
KOTA-TV of Rapid City, South Dakota speaks with Fermilab’s Mike Gemelli and Steve Brice on the completion of the cavern excavation and the outfitting work ahead to prepare the DUNE detectors for installation.
KOTA-TV, Feb. 14, 2024
KOTA-TV of Rapid City, South Dakota speaks with Fermilab’s Mike Gemelli and Steve Brice on the completion of the cavern excavation and the outfitting work ahead to prepare the DUNE detectors for installation.
Black Hills Pioneer, Feb. 13, 2024
Earlier this month, Fermilab announced crews completed excavation work for the massive caverns that comprise the Long Baseline Neutrino Facility, which is being constructed to house the Deep Underground Neutrino Experiment.
Mining.com, Feb. 4, 2024
Excavation of three colossal caverns has been completed for the international Deep Underground Neutrino Experiment in the former Homestake mine in South Dakota, the biggest and deepest gold mine in North America until its closure in 2002.
From the University of Illinois, Urbana-Champaign, Grainger College of Engineering, Feb. 5, 2024
Fermilab scientist Juan Estrada recently took his novel Skipper detector technology to students in the Department of Aerospace Engineering at U of I run a thermal vacuum test for the DarkNESS mission. The test successfully demonstrated the crucial thermal control capabilities required for the detector operation.
From the Black Hills Pioneer, Jan. 19, 2024
The first components for the Deep Underground Neutrino Experiment have arrived in Lead, SD. Starting this spring the LBNF/DUNE project team and officials at the Sanford Underground Research Facility will begin tests to ensure cryostats for the experiment can be safely lowered down the Ross Shaft.
DOE Office of Science, Oct. 13, 2023
Although neutrinos are the most common matter particle in the universe they are also known as ghost particles because they move through our bodies every second without ever interacting with us. Neutrinos won’t be scaring anyone on Halloween but they will be studied by scientists in the Deep Underground Neutrino Experiment led by Fermilab.
From Pacific Northwest National Laboratory, July 25, 2023: PNNL scientists and a team of university and national laboratory collaborators recently published a paper detailing a new detector design that can be fine-tuned to increase sensitivity to physics beyond the original DUNE concept.
From PNNL, July 25, 2023: PNNL researchers and a team of university and national laboratory collaborators recently published a paper detailing a new detector design that can be fine-tuned to increase sensitivity to physics beyond the original DUNE concept. The new detector, named SLoMo, will enhances DUNE’s sensitivity to neutrinos emitted from sources other than the beam of neutrinos created at Fermilab.
From Physics World, March 6, 2023: The MINERvA experiment at Fermilab has been used to study the structure of the proton using neutrinos. Teijin Cai and colleagues working on Fermilab’s MINERvA experiment have showed how information about the proton can be extracted from neutrinos that have been scattered by the detector’s plastic target.