detector technology

From PNNL, July 25, 2023: PNNL researchers and a team of university and national laboratory collaborators recently published a paper detailing a new detector design that can be fine-tuned to increase sensitivity to physics beyond the original DUNE concept. The new detector, named SLoMo, will enhances DUNE’s sensitivity to neutrinos emitted from sources other than the beam of neutrinos created at Fermilab.

From Physics World, March 6, 2023: The MINERvA experiment at Fermilab has been used to study the structure of the proton using neutrinos. Teijin Cai and colleagues working on Fermilab’s MINERvA experiment have showed how information about the proton can be extracted from neutrinos that have been scattered by the detector’s plastic target.

From the Universities Research Association: Michael Dolce, a physics doctoral candidate at Tufts University, was awarded a stipend as part of the URA’s Fall 2020 Visiting Scholars Program to compare data collected between NOvA’s Near and Far detector. While on the VSP grant, Dolce worked alongside his sponsor Dr. Louise Suter, a NOvA expert and Fermilab scientist who provided him a direct line to the laboratory and valuable guidance.

From Science News Online, August 5, 2021: Science writer Emily Conover explores the fascinating world of neutrino detectors that make the invisible world of particles visible. Read more about how neutrino detectors have evolved with insights Fermilab’s Jennifer Raaf and Sam Zeller.

From Department of Energy, June 28, 2021: DOE announces $93 million in funding for 71 research projects that will spur new discoveries in high-energy physics. The projects—housed at 50 colleges and universities across 29 states—are exploring the basics of energy science that underlie technological advancements in medicine, computing, energy technologies, manufacturing, national security and more.

From Smithsonian Magazine, May 13, 2021: A group of scientists say the phenomenon could indicate dark matter speeding through our world at more than 300 miles a second. Fermilab’s Dan Hooper is quoted in this story about the study of flashes seen in ordinary lightning storms showing evidence of super-dense chunks of dark matter as they zip through our atmosphere.