neutrino

From Science Daily, Feb. 1, 2023: Yesterday, Nature posted new research which used a beam of neutrinos for the first time to investigate the structure of protons. With Fermilab’s MINERvA detector, scientists were able to precisely measure the proton’s size and structure using neutrinos with data gathered from thousands of neutrino-hydrogen scattering events.

One of two magnetic focusing horns used in the beamline at Fermilab that produces intense neutrino beams for MINERvA and other neutrino experiments.

For the first time, particle physicists have been able to precisely measure the proton’s size and structure using neutrinos with data gathered from thousands of neutrino-hydrogen scattering events collected by MINERvA, a particle physics experiment at the U.S. Department of Energy’s Fermi National Accelerator Laboratory.

For decades, scientists have tried to find a way to measure the mass of the lightest matter particle known to exist. Three new approaches now have a chance to succeed.

Scientists are pretty sure the universe started with the Big Bang. But the furthest back in time we can explore is 370,000 years after spacetime began. So, how do we measure the Big Bang, and how could our favorite friends — neutrinos — revolutionize our understanding of the early universe? In this video, physicist Kirsty Duffy explores these concepts and discusses the cosmic neutrino background.

A supernova is one of the most energetic events in the universe since the Big Bang. Entire stars blow up, announcing their death to the cosmos. In this video, Don Lincoln talks about how Fermilab researchers are building a detector that can peer into the core of the supernova as it is exploding. Neutrinos provide a microscope that cannot be duplicated by any other means.

2022 Fermilab highlights

Scientists and engineers from more than 50 countries collaborate with Fermilab to develop state-of-the-art technologies and solve the mysteries of matter, energy, space and time. Here are highlights of how they advanced science and technology this year.

A new neutrino detection system, built for the Short Baseline Near Detector, was transported 3 miles across the Fermilab campus on Dec. 1. Moving the system was no easy feat: The transport began at 6 a.m. and lasted more than 10 hours on the 3-mile journey with a maximum speed of 2.5 miles per hour. Enjoy this short video of the entire move in under two minutes!