neutrino

The groundbreaking ANNIE experiment at Fermilab has seen its first neutrino events. This milestone heralds the start of an ambitious program in neutrino physics and detector technology development. It is also a cause for celebration by the international ANNIE collaboration, composed of groups from Germany, the United Kingdom and the United States.

From News at South Dakota State, Feb. 25, 2020: Two South Dakota State University professors are part of an international team of scientists and engineers working to uncover details about how the universe was formed. Stephen Gent and Greg Michna are using SDSU’s high-performance computing cluster to predict how argon circulates within the particle detectors to be constructed one mile beneath the earth’s surface. The detectors are for Fermilab’s Long-Baseline Neutrino Facility/Deep Underground Neutrino Experiment, which will be installed in the Sanford Underground Research Facility in Lead, South Dakota.

From Tunnels and Tunneling, Feb. 19, 2020: Three of the underground construction components are near completion at the Sanford Underground Research Facility for the far site of Fermilab’s Long-Baseline Neutrino Facility. Work is finishing up on two ore passes that connect the 4850 Level, almost one mile underground, to skips in the Ross Shaft; the Ross Headframe, which must support the skips that bring the rock to the surface; and the tramway tunnel, which will house the conveyor system that will transport excavated rock to its final location.

From Black Hills Pioneer, Feb. 19, 2020: Data from the Deep Underground Neutrino Experiment could help physicists explain the origin of matter, witness a never-before-seen particle decay and better understand how black holes form in space. To prepare for this groundbreaking science, a major construction project is under way to ready the Sanford Underground Research Facility for its role as the far site of Fermilab’s Long-Baseline Neutrino Facility.

From Labmate, Feb. 19, 2020: UK Research and Innovation representatives and the U.S. Department of Energy have signed an agreement outlining £65 million in contributions by UK research institutions and scientists to the international Deep Underground Neutrino Experiment and related projects hosted by Fermilab.

Heavy neutrino decay simulation

Scientists of the Fermilab experiment MicroBooNE have published the results of a search for a type of hidden neutrino — much heavier than Standard Model neutrinos — that could be produced by Fermilab’s accelerators. These heavy neutrinos are expected to have longer travel times to the MicroBooNE detector than the ordinary neutrinos. This search is the first of its kind performed in a liquid-argon time projection chamber, a type of particle detector. MicroBooNE scientists have used their data to publish constraints on the existence of such heavy neutrinos.