From Reuters, Nov. 30, 2022: Researchers from Cal Tech and Fermilab announced on Wednesday that they forged two miniscule simulated black holes – those extraordinarily dense celestial objects with gravity so powerful that not even light can escape – in a quantum computer and transmitted a message between them through what amounted to a tunnel in space-time.
space-time
From the Big Think, Nov. 17, 2022: Don Lincoln tackles the real answer to the question, “Why can’t we travel faster than the speed of light”? drawing from Einstein’s theory and spacetime.
From Bloomberg Quicktake, Feb. 23. 2021: In this video, Fermilab scientist Don Lincoln adds his perspective on time dilation and how it affects time and gravity. This precise measurement of time will allow scientists to measure plates, large movements deep below earth’s surface and climate change.
Fermilab scientist and University of Chicago professor of astronomy and astrophysics Craig Hogan gives perspective on how the Holometer program aims at a tiny scale — the Planck scale — to help answer one of the universe’s most basic questions: Why does everything appear to happen at definite times and places? He contextualizes the results and offers optimism for future researchers.
Imagine an instrument that can measure motions a billion times smaller than an atom that last a millionth of a second. Fermilab’s Holometer is currently the only machine with the ability to take these very precise measurements of space and time, and recently collected data has improved the limits on theories about exotic objects from the early universe.
The Fermilab Holometer has reached its design luminosity, building up more than 1 kilowatt of infrared laser power stored in a 40-meter-long Michelson interferometer. This light intensity corresponds to more than 10 billion trillion photons per second hitting the interferometer optics. It also allows scientists to measure the optics’ positions to a resolution 1,000 times smaller than the size of a proton.