New discovery? Or just another bump?
For physicists, seeing is not always believing.
881 - 885 of 885 results
For physicists, seeing is not always believing.
Finding a small discrepancy in measurements of the properties of neutrinos could show us how they fit into the bigger picture. One of those properties is a parameter called theta13. Theta13 relates deeply to how neutrinos mix together, and it’s here that scientists have seen the faintest hint of disagreement from different experiments.
It survived a month-long journey over 3,200 miles, and now the delicate and complex electromagnet is well on its way to exploring the unknown. The Muon g-2 ring has successfully cooled down to operating temperature and powered up, proving that even after a decade of inactivity, it remains a vital and viable scientific instrument.
Scientists think that a Higgs force does exist. But it’s the Higgs boson’s relationship to that force that makes it a bit of a black sheep. It’s the reason that, when the Higgs is added to the Standard Model of particle physics, it’s often pictured apart from the rest of the boson family.
The CMS and ATLAS experiments combined forces to more precisely measure properties of the Higgs boson. Sticking with the philosophy that two experiments are better than one, scientists from the ATLAS and CMS collaborations presented combined measurements of other Higgs properties at the third annual Large Hadron Collider Physics Conference in St. Petersburg, Russia.