CMS

Scientists working on experiments at the LHC are continually refining our understanding of the fundamental constituents of our universe. Every measurement, every new, uncovered facet of a subatomic particle comes only after a thorough and rigorous analysis of the data. The way they access that data may soon get an upgrade at Fermilab, where CMS collaborators recently installed a new solid-state technology at its computing facility. The technology will complement the standard spinning-disk hard drives that have been the dominant computer storage devices for the last several decades.

The High-Luminosity LHC will provide exciting physics opportunities but also daunting computing challenges for CMS. The amount of data will increase by a factor of 60, and the average number of pileup interactions per event is expected to increase by a factor of 5.
Researchers at Fermilab and partners are working to speed up the CMS tracking algorithm by taking advantage of modern, highly parallel CPU architectures.

From CERN Courier, Sept. 9, 2020: The first ICHEP meeting since the publication of the update of the European strategy for particle physics covered Higgs and neutrino physics, including results from the CMS collider experiment and the DUNE, NOvA and MicroBooNE neutrino experiments.

Scientists know the Higgs boson interacts with extremely massive particles. Now, they’re starting to study how it interacts with lighter particles as well.

For a week spanning the months of July and August, scientists from around the world virtually gathered to attend the prestigious biennial ICHEP conference. At ICHEP, some of the most exciting physics results of the year are unveiled. CMS scientists from Fermilab and the LHC Physics Center were well-represented at the conference.

The ATLAS and CMS experiments at CERN have announced new results that show that the Higgs boson decays into two muons. US CMS — the United States contingent of the global CMS collaboration — played a crucial role in this result, contributing to the excellent performance of CMS detector.