Higgs boson

From CERN Courier, Sept. 9, 2020: The first ICHEP meeting since the publication of the update of the European strategy for particle physics covered Higgs and neutrino physics, including results from the CMS collider experiment and the DUNE, NOvA and MicroBooNE neutrino experiments.

Scientists know the Higgs boson interacts with extremely massive particles. Now, they’re starting to study how it interacts with lighter particles as well.

For a week spanning the months of July and August, scientists from around the world virtually gathered to attend the prestigious biennial ICHEP conference. At ICHEP, some of the most exciting physics results of the year are unveiled. CMS scientists from Fermilab and the LHC Physics Center were well-represented at the conference.

The ATLAS and CMS experiments at CERN have announced new results that show that the Higgs boson decays into two muons. US CMS — the United States contingent of the global CMS collaboration — played a crucial role in this result, contributing to the excellent performance of CMS detector.

From Department of Energy, July 6, 2020: DOE announces $132 million in funding for 64 university research awards on a range of topics in high-energy physics to advance knowledge of how the universe works at its most fundamental level. Projects include experimental work on neutrinos at Fermilab, the search for dark matter, studies of the nature of dark energy and the expansion of the universe with the Dark Energy Spectroscopic Instrument and and investigation of the Higgs boson from data collected at the Large Hadron Collider at CERN in Switzerland.

The Standard Model of particle physics was devised in the 1960s and 1970s and tested extensively over the decades. One unanswered question was on the origin of the mass of subatomic particles. A theory proposed in 1964 by Peter Higgs and others proposed an energy field called the Higgs field and a particle called the Higgs boson. It took nearly 50 years, but in 2012, the Higgs boson was discovered. In episode 8 of Subatomic Stories, Fermilab scientist Don Lincoln sheds some light on this last discovered feature of the Standard Model.

From Physics World, April 3, 2020: A collaboration that includes Fermilab scientists is exploring how quantum computing could be used to analyze the vast amount of data produced by experiments on the Large Hadron Collider at CERN. The researchers have shown that a “quantum support vector machine” can help physicists make sense out of the huge amounts of information generated at CERN.

Only a fraction of collision events that look like they produce a Higgs boson actually produce a Higgs boson. Luckily, it doesn’t matter.

From CERN, Oct. 15, 2019: A new result by the CMS Collaboration narrows down the mass of the Higgs boson to a precision of 0.1%. After reporting the observation of the Higgs boson at the CERN LHC in 2012, scientists the ATLAS and CMS collaborations have been busy understanding exactly its place within the standard model of particle physics. Any straying from expectations could be an indication of new physics.