Public

From Futurism, Aug. 19, 2020: When an ambitious new Fermilab-hosted experiment called DUNE begins its work, physicists believe they’ll be able to learn a whole lot more about supernova explosions than ever before. That’s because DUNE is expected to be sensitive to an extremely elusive particle called a neutrino that’s blasted far and wide across the cosmos when a star explodes. According to a new paper shared online on Saturday, physicists expect DUNE to scoop up a never-before-detected kind of neutrino and, in doing so, break down why and how stars die in unprecedented detail.

The international Deep Underground Neutrino Experiment collaboration has published a paper about its capability for performing supernova physics. It details the kind of activity DUNE expects in the detector during a supernova burst, how DUNE will know once a supernova occurs and what physics DUNE will extract from the neutrinos. DUNE’s unique strength is its sensitivity to a particular type of neutrino called the electron neutrino, which will provide scientists with supernova data not available from any other experiment.

From the Department of Energy, Aug. 17, 2020: Seven DOE national laboratories, including Fermilab, will lead a total of 14 projects aimed at both automating facility operations and managing data modeling, acquisition, mining, and analysis for the interpretation of experimental results. The projects involve large X-ray light sources, neutron scattering sources, particle accelerators and nanoscale science research centers.

Scientists know the Higgs boson interacts with extremely massive particles. Now, they’re starting to study how it interacts with lighter particles as well.

From New Atlas, Aug. 12, 2020: An extensive search for a hypothetical particle has turned up empty. The sterile neutrino is a proposed subatomic particle that could even be a candidate for the mysterious dark matter, and although previous studies have hinted at its existence, and the MINOS+ and Daya Bay experiments have all but ruled it out.

From APS Physics, Aug. 10, 2020: Fermilab scientist Pedro Machado co-authors this article on how the MINOS and MINOS+ experiments at Fermilab and the Daya Bay experiment have placed the most stringent limits to date on a hypothetical fourth neutrino. Still, the possibility that such a particle exists remains open.

The skipper CCD instrument at the heart of scientist Javier Tiffenberg’s research shows promise for dark matter, neutrino detection and more. For the development of this forefront detector, Tiffenberg has won this year’s Universities Research Association Early Carer Award.

From the Department of Energy, Aug. 11, 2020: Fermilab scientist Chris Polly shares his love of physics, the importance of muons, a short history of scientists’ quest to measure how the muon wobbles in a magnetic field, and his journey to becoming leader of the Muon g-2 experiment.