DUNE

211 - 220 of 427 results

Fermilab breaks ground on second part of Deep Underground Neutrino Experiment

    From UC Davis’s Egghead, Nov. 15, 2019: On Nov. 14, Fermilab and international partners held a groundbreaking for the Long-Baseline Neutrino Facility at the Fermilab site. LBNF will send a beam of trillions of neutrinos straight through Earth to the underground detector in South Dakota, 800 miles away. LBNF provides the infrastructure for the international Deep Underground Neutrino Experiment, hosted by Fermilab.

    Fermilab, international partners break ground on new beamline for the world’s most advanced neutrino experiment

    With a ceremony held today, Fermilab joined with its international partners to break ground on a new beamline that will help scientists learn more about ghostly particles called neutrinos. The beamline is part of the Long-Baseline Neutrino Facility, which will house the Deep Underground Neutrino Experiment, an international endeavor to build and operate the world’s most advanced experiment to study neutrinos.

    How do you make the world’s most powerful neutrino beam?

    The Deep Underground Neutrino Experiment will tackle some of the biggest mysteries in physics — and to do so, it will need the most intense high-energy beam of neutrinos ever created. Engineers are up to the complicated task, which will need extreme versions of some common-sounding ingredients: magnets and pencil lead.

    DUNE ar putea oferi informaţii importante despre neutrinii solari

      From Descoperă.ro, Oct. 31, 2019: Deep Underground Neutrino Experiment a fost conceput pentru a înţelege mai bine neutrino şi degradarea protonilor. Într-un studiu recent, o echipă de cercetători de la Universitatea Ohio explică faptul că DUNE ar putea să îi ajute pe cercetători să realizeze o serie de descoperiri fundamentale legate de neutrinii solari, notează Phys.

      Neutrino physicist Kirsty Duffy receives Leona Woods Lectureship Award

      Kirsty Duffy, a Lederman fellow at Fermilab, says neutrinos are the most interesting particles in the universe. As a recipient of the Leona Woods Distinguished Postdoctoral Lectureship Award, she’ll have a chance to make her case in two talks she’ll deliver at the Brookhaven National Laboratory this November.

      The future of particle physics is bright, bleak, and magical

        From Gizmodo, Oct. 23, 2019: Ahead lies a whole frontier in particle physics of grand unsolved mysteries, including why there’s more matter than antimatter in the universe, what the true identity of dark matter and dark energy is, or how the strange, ultraweak neutrino particles ended up so ghostly. The Fermilab-hosted DUNE and Muon g-2 experiments are among those looking for answers.