Dark Energy Survey

From The University of Chicago Physical Sciences, Feb. 8, 2021: Fermilab scientist Richard Kron is retiring from the University of Chicago. He co-founded the Sloan Digital Sky Survey, which created the most detailed 3-D maps of the universe and recorded the spectra for more than 3 million astronomical objects. His approach influenced the Dark Energy Survey, which created one of the most accurate dark matter maps of the universe and which Kron will continue to direct.

From NOIRLab, Feb. 8, 2021: The Dark Energy Camera, originally used to complete the Dark Energy Survey, has taken the most detailed photo of Messier 83, also known as the Southern Pinwheel galaxy. (In DECam’s second act, scientists can apply for time to use it to collect data that is then made publicly available.) In all, 163 DECam exposures went into creating this image.

From Super Interessante, Jan. 31, 2021: A team of researchers from Fermilab and the National Observatory in Brazil used the light of solitary stars to calculate the mass of some of the largest structures in the cosmos — galaxy clusters. In addition to taking the most detailed measurement ever published of intracluster light, the team’s new method of measurement can help further investigate dark matter.

From Forbes, Jan. 14, 2021: The Dark Energy Survey recently publicly released an enormous amount of data for anyone to use. This data set contains nearly seven hundred million individual astronomical objects. Fermilab scientist Don Lincoln explains how collaborators on the Dark Energy Survey study the history of the universe and highlights a number of the scientific findings in DES’s rich trove of data.

Scientists on the Dark Energy Survey have used observations of the smallest known galaxies to better understand dark matter, the mysterious substance that makes up 85% of the matter in the universe. The smallest galaxies can contain hundreds to thousands of times more dark matter than normal visible matter, making them ideal laboratories for studying this mysterious substance. By performing a rigorous census of small galaxies surrounding our Milky Way, scientists on the Dark Energy Survey have been able to constrain the fundamental particle physics that governs dark matter.