Sarah Charley

A proton describes its final moments in the Large Hadron Collider. During its second run, between 2015 and 2018, the Large Hadron Collider at CERN collided about 16 million billion particle pairs. This 3-minute animation is the story of one of them.

During the last four years, LHC scientists have filled in gaps in our knowledge and tested the boundaries of the Standard Model. Since the start of Run II in March 2015, they’ve recorded an incredible amount of data —five times more than the LHC produced in Run I. The accelerator produced approximately 16 million billion proton-proton collisions — about one collision for every ant currently living on Earth.

During the short heavy-ion run at the Large Hadron Collider at CERN, every moment counts. As one scientist puts it, experimenters have “four weeks to collect all the data we will use for the next three years.” The data arising from LHC’s collisions of heavy nuclei, such as lead, will be used to study the properties of a very hot and dense subatomic material called the quark-gluon plasma.

From GED to PhD

Physicist Kira Burt dropped out of school at 16. Now she teaches students that anyone can be a scientist.

Tour du LHC

An intrepid Symmetry writer and communicator at CERN navigates the landscape above the Large Hadron Collider by bicycle.

Machine learning will become an even more important tool when scientists upgrade to the High-Luminosity Large Hadron Collider.