mass

1 - 10 of 12 results

How the Moon is helping us confirm Einstein’s relativity

    From Big Think: A recent series of precise measurements of the Moon confirms that there are two types of mass which are the same. In Einstein’s most advanced theory, there are three “kinds” of mass that are thought to be one and the same but there is no fundamental reason why. Don Lincolns explains why.

    Who ordered a too heavy W boson?

      From Pour la Science, April 11, 2022: A new measurement of the mass of the W boson is higher than predicted by the Standard Model. Is this a sign of new physics? For experts in the field, this conclusion would be premature. But this result is nevertheless very interesting as one of the most difficult measurements in physics.

      Could this 40-year old formula be the key to going beyond the standard model?

        From Forbes, Sept. 8, 2021: The Standard Model provides the framework of all the known and discovered fundamental particles, but has no way of providing expected values for what masses each particle should possess. Fermilab’s Main Ring, in operation for 25 years by physicists who used the accelerator for experiments, helped to create our current picture of the ultimate structure of matter, the Standard Model of particle interactions.

        Massless particles can’t be stopped

        Imagine a particle. What comes to mind? If you aren’t a theoretical particle physicist, chances are you picture a tiny ball, bobbing in space. But that’s not quite correct. One way to prove it: Try to imagine that tiny ball as a particle with no mass. If a particle has no mass, how can it exist?