From Physics, Jan. 31, 2023: Fermilab scientists are part of a group of researchers using cross-correlation measurements combining data from the Dark Energy Survey and the South Pole Telescope to determine cosmological parameters with greater precision. The analysis involved more than 150 researchers with results published as a set of three articles in Physical Review D.
cosmic microwave background
The cosmic microwave background has been a treasure trove of information about the universe, as well as a source of questions that have not yet been resolved. In this video, Don Lincoln describes two unsolved mysteries of the CMB. The first makes you ask if the solar system has a special place in the universe, and the second is a giant cold spot that could be the signature of a giant void or, much more unlikely, of colliding universes.
The cosmic microwave background is the fossil remnant of the fireball of the Big Bang. Aside from demonstrating that the Big Bang happened, it can tell us how big the universe is and how much dark matter and energy the universe contains. In this video, Fermilab’s Don Lincoln guides you through this interesting topic.
The Cosmic Microwave Background, or CMB, is the remnant of the primordial fireball of the Big Bang. In this video, Fermilab’s Don Lincoln explains how it came to be. This is the first of a three-part series, with following videos to describe what secrets the CMB has revealed and what mysteries remain to be solved.
From AZoMaterials, Feb. 18, 2021: Fermilab scientist Jeff McMahon and his research team have designed a new kind of metamaterials-based antireflection coating for the silicon lenses used in cameras used to capture the cosmic microwave background.
The U.S. Department of Energy has selected Lawrence Berkeley National Laboratory to lead a DOE/NSF experiment that combines observatories at the South Pole and in Chile’s high desert. Fermilab plans to be a key partner on the experiment, called CMB-S4, which aims to undertake an unprecedented survey of the early universe.