361 - 370 of 650 results

Clash of the Titans

    From Science, September 29, 2022: Fermilab’s DUNE and Japan’s Hyper-K experiments are building similar yet different projects that will study neutrino oscillations and search for CP violation in hopes it will lead to answers on how the newborn universe generated more matter than antimatter. Read more on how these two projects are progressing, how they differ and how they might answer more about the elusive neutrino.

    US particle physicists envision future of the field

      From Physics Today: Snowmass 2022 this past July took place over 10 days with almost 1,200 people participating online and in person at the University of Washington. It involved 511 white papers spanning 10 “frontier” areas. This once-a-decade meeting also reaffirmed support for completing the Deep Underground Neutrino Experiment (DUNE) and the affiliated Long-Baseline Neutrino Facility to carry our DUNE’s science goals.

      ‘Earth sits in a cosmic shooting gallery’

        From CNN, September 26, 2022: Don Lincoln discusses how NASA and researchers slammed a 570 kilogram spacecraft called Double Asteroid Redirection Test (DART) into the Dimorphos asteroid to test if the impact will change the asteroid’s trajectory and help scientists understand if potentially dangerous space rocks can be diverted before they endanger the Earth.

        Neutrinos & the mystery of the universe’s matter

          From Science News, September 22, 2022: Emily Conover explains in this video why the universe contain so much more matter than antimatter told through the lens of a classic, 8-bit video game, with matter and antimatter locked in an epic battle for cosmic supremacy. Experiments like DUNE will examine ghostly subatomic particles known as neutrinos to provide clues.

          NSF, Department of Energy Grants Enable Physicists to Continue Cutting-Edge Research in Neutrino Discovery

            From Syracuse University, September 18, 2022: Researchers at Syracuse University have received two new grants that will expand their work with physicists from around the world on projects that include MicroBooNE, DUNE and NOvA. The support comes from the NSF and DOE and will enable graduate and undergraduate students to work on everything from detector construction and operation at Fermilab and Syracuse, to final data analysis and software development.

            Quantum Research Bits: Is silicon the ideal substrate for qubits? It depends who you ask.

              From Semiconducting Engineering, September 12, 2022: How do you extend the lifespan of qubits? Researchers at the Supercomputing Quantum Materials and Systems Center say silicon limits the lifespan of qubits because of quantum decoherence. Fermilab’s Alexander Romanenko discusses recently published research on how individual sub-components contribute to the decoherence of the qubits. Could sapphire be a better choice for future quantum chips?