superconducting radio-frequency technology

From CERN Courier, Nov. 10, 2020: Established 30 years ago with a linear electron-positron collider in mind, the TESLA Technology Collaboration has played a major role in the development of superconducting radio-frequency cavities and related technologies for a wide variety of applications. The first decade of the 21st century saw the TTC broaden its reach, for example, gradually opening to the community working on proton superconducting cavities, such as the half-wave resonator string collaboratively developed at Argonne National Lab and now destined for use in PIP-II at Fermilab.

One of the most difficult problems to overcome in developing a quantum computer is finding a way to maintain the lifespan of information held in quantum bits, called qubits. Researchers at Fermilab and Argonne National Laboratory are working to determine whether devices used in particle accelerators can help solve the problem. The team will run simulations on high-performance computers that will enable them to predict the lifespan of information held within these qubits using smaller versions of these devices, taking us one step closer to the age of quantum computing.

From Northwestern University, Nov. 8, 2019: Northwestern and Fermilab researchers, including Fermilab scientists Anna Grassellino and Alexander Romanenko, show how impurities can increase the maximum accelerating field of superconducting radio-frequency cavities, a finding with huge potential cost advantages.

Giaccone’s research focuses on particle accelerator cavities — the structures that transfer energy to particle beams as the beams race through them. She and her team use plasma to process the inner surface of the cavities in order to remove contaminations. This new technique results in a better-performing accelerator. Her work was recently recognized at the International Conference on RF Superconductivity.

From WDCB’s First Light, March 24, 2019: Brian O’Keefe interviews Fermilab PIP-II Project Director Lia Merminga about PIP-II, an accelerator project critical to the lab’s future. Fermilab broke ground on PIP-II on March 15. Learn about how PIP-II will power the international Deep Underground Neutrino Experiment, hosted by Fermilab, and the lab’s experimental program in this 15-minute piece.

Fermilab’s quantum program includes a number of leading-edge research initiatives that build on the lab’s unique capabilities as the U.S. center for high-energy physics and a leader in quantum physics research. On the tour, researchers discussed quantum technologies for communication, high-energy physics experiments, algorithms and theory, and superconducting qubits hosted in superconducting radio-frequency cavities.