Jonathan Jarvis and Jamie Santucci install the apparatus for the new optical stochastic cooling experiment in the Fermilab Integrable Optics Test Accelerator, known as IOTA, in November. The experiment uses infrared light emitted by electrons in an undulator magnet to sense and to adjust their positions and velocities. The goal is to demonstrate for the first time a significant increase in the density and therefore in the quality of charged particle beams using this principle.

The spirit of cooperation among Fermilab employees was instrumental in the gradual shutdown of the accelerator complex over March and April. It has also been key in the complex’s steady restart, which began in September and is currently rolling out.

From CERN Courier, Nov. 10, 2020: Established 30 years ago with a linear electron-positron collider in mind, the TESLA Technology Collaboration has played a major role in the development of superconducting radio-frequency cavities and related technologies for a wide variety of applications. The first decade of the 21st century saw the TTC broaden its reach, for example, gradually opening to the community working on proton superconducting cavities, such as the half-wave resonator string collaboratively developed at Argonne National Lab and now destined for use in PIP-II at Fermilab.

Fermilab scientist Robert Ainsworth has won a $2.5 million Department of Energy Early Career Research Award to study different ways of ensuring stability in high-intensity proton beams. By studying how certain types of beam instabilities emerge and evolve under different conditions, his team can help sharpen scientists’ methods for correcting them or avoiding them to begin with.

The PIP-II project at Fermilab includes the construction of a 215-meter-long particle accelerator that will accelerate particles to 84% of the speed of light. Research institutions in France, India, Italy, Poland, the UK and the United States are building major components of the new machine. The new particle accelerator will enable Fermilab to generate an unprecedented stream of neutrinos — subtle, subatomic particles that could hold the key to understanding the universe’s evolution.

From The Innovation Platform, July 10, 2020: In this Q&A, Mauricio Suarez, Illinois Accelerator Research Center head and Fermilab deputy head of technology development and industry engagements, discusses the development of compact particle accelerators, using accelerators for the environment and in medicine, and commercializing technologies developed for high-energy physics.