dark energy

From Super Interessante, Jan. 31, 2021: A team of researchers from Fermilab and the National Observatory in Brazil used the light of solitary stars to calculate the mass of some of the largest structures in the cosmos — galaxy clusters. In addition to taking the most detailed measurement ever published of intracluster light, the team’s new method of measurement can help further investigate dark matter.

From New Scientist, Jan. 25, 2021: The Big Bang left us the universe — and a major set of mysteries around antimatter, dark matter, dark energy, and cosmic inflation. While the Large Hadron Collider looks at what the laws of physics were like a trillionth of a second after the Big Bang, Dan Hooper, head of theoretical astrophysics at Fermilab, thinks the answers to these puzzles may depend on better understanding that first fraction of a second — even closer to the universe’s beginning.

Mysteries abound in the universe, including the universe’s ultimate fate. In this episode of Subatomic Stories, Fermilab scientist Don Lincoln talks about the observation of a new form of energy called dark energy, which will determine the future of the cosmos.

From Department of Energy, July 6, 2020: DOE announces $132 million in funding for 64 university research awards on a range of topics in high-energy physics to advance knowledge of how the universe works at its most fundamental level. Projects include experimental work on neutrinos at Fermilab, the search for dark matter, studies of the nature of dark energy and the expansion of the universe with the Dark Energy Spectroscopic Instrument and and investigation of the Higgs boson from data collected at the Large Hadron Collider at CERN in Switzerland.

From Gizmodo, May 5, 2020: Fermilab scientist Brian Nord weighs in on the question of how automated devices, such as an autonomously operating telescope, free from human biases and complications, could find the solutions to questions about dark matter and dark energy.