Muon g-2

The discovery of the muon originally confounded physicists. Today international experiments are using the previously perplexing particle to gain a new understanding of our world.

An international team of theoretical physicists have published their calculation of the anomalous magnetic moment of the muon. Their work expands on a simple yet richly descriptive equation that revolutionized physics almost a century ago and that may aid scientists in the discovery of physics beyond the Standard Model. Now the world awaits the result from the Fermilab Muon g-2 experiment.

From APS Physics, May 14, 2020: Particle physicists are faced with a growing list of anomalies — experimental results that conflict with the Standard Model but fail to overturn it for lack of sufficient evidence. These include the muon anomaly, which scientists on Fermilab’s Muon g-2 experiment are studying. Fermilab scientist Chris Polly is featured in this article.

From Gizmodo, Jan. 25, 2020: Physicists have found all of the particles and forces that the Standard Model describes, but there are still countless mysteries in the universe that the theory fails to explain. Various experiments are now probing the Standard Model for cracks, and this year, scientists hope to unveil a measurement from one of them, the Muon g-2 experiment, a measurement that might break from the theory.

From Nature, Dec. 20, 2019: Fermilab should unveil long-awaited results from Muon g–2, a high-precision measurement of how muons — more-massive siblings of electrons — behave in a magnetic field. Physicists hope that slight anomalies could reveal previously unknown elementary particles.

From Gizmodo, Oct. 23, 2019: Ahead lies a whole frontier in particle physics of grand unsolved mysteries, including why there’s more matter than antimatter in the universe, what the true identity of dark matter and dark energy is, or how the strange, ultraweak neutrino particles ended up so ghostly. The Fermilab-hosted DUNE and Muon g-2 experiments are among those looking for answers.

From Johannes Gutenberg University Mainz, Sept. 30, 2019: Johannes Gutenberg University Mainz strengthens its relationship with Fermilab by joining the Muon g-2 collaboration. Muon g-2 aims at a determination of the muon anomalous magnetic moment with the unprecedented precision of 140 part per billion. This fourfold improvement over the last experiment, performed at Brookhaven National Laboratory more than 15 years ago, will allow to scientists test the resulting more than 3 standard deviation discrepancy between experiment and the prediction of the Standard Model in its current form.