magnet

Missing March Madness? Let Fermilab fill a small part of the void created in these times of social distancing and shelter-in-place. Participate in Fermilab’s sendup of the NCAA tournament: March Magnets. Learn about eight different types of magnets used in particle physics, each with an example from a project or experiment in which Fermilab is a player. Then head over to the Fermilab Twitter feed on March 30 to participate in our March Magnets playoffs.

From CERN Courier, March 23, 2020: A quadrupole magnet for the High-Luminosity LHC has been tested successfully in the U.S., attaining a conductor peak field of 11.4 tesla — a record for a focusing magnet ready for installation in an accelerator. The device is based on the superconductor niobium-tin and is one of several quadrupoles being built by U.S. labs and CERN for the HL-LHC, where they will squeeze the proton beams more tightly within the ATLAS and CMS experiments to produce a higher luminosity.

Accelerator magnets — how do they work? Depending on the number of poles a magnet has, it bends, shapes or shores up the stability of particle beams as they shoot at velocities close to the speed of light. Experts design magnets so they can wield the beam in just the right way to yield the physics they’re after. Here’s your primer on particle accelerator magnets.

Fermilab, Brookhaven National Laboratory and Lawrence Berkeley National Laboratory have achieved a milestone in magnet technology. Earlier this year, their new magnet reached the highest field strength ever recorded for an accelerator focusing magnet. It will also be the first niobium-tin quadrupole magnet to operate in a particle accelerator — in this case, the future High-Luminosity Large Hadron Collider at CERN.

From Cold Facts, Sept. 17, 2019: Scientists at Fermilabhave achieved the highest magnetic field strength ever recorded for an accelerator steering magnet, setting a world record of 14.1 teslas, with the magnet cooled to 4.5 kelvin or minus 450 degrees Fahrenheit. Lawrence Berkeley National Laboratory held the previous record of 13.8 teslas, achieved at the same temperature, for 11 years.

From Gizmodo, Sept. 13, 2019: Physicists at Fermilab have produced and tested a powerful magnet of the sort that could appear in the next generation of particle colliders. Fermilab scientist Alexander Zlobin talks with Gizmodo about the lab’s recent milestone achievement in reaching 14.1 teslas for a steering magnet.

From Tia Sáng, Sept. 13, 2019: Để xây dựng thế hệ máy gia tốc proton mới có khả năng gia tốc hạt lớn hơn, các nhà khoa học cần những nam châm mạnh nhất để có thể lái các hạt tới gần tốc độ ánh sáng lưu chuyển quanh một vòng tròn. Với một kích cỡ vòng tròn cho trước, để đưa năng lượng của chùm tia đạt mức cao hơn, các nam châm của máy gia tốc cần đạt được lực mạnh hơn để giữ cho chùm tia đi đúng hành trình của mình.

From KopalniaWiedzy.pl, Sept. 13, 2019: Naukowcy z Fermilab poinformowali o wygenerowaniu najsilniejszego pola magnetycznego stworzonego na potrzeby akceleratorów cząstek. Nowy rekord wynosi 14,1 tesli, a wynik taki uzyskano w magnecie schłodzonym do 4,5 kelwinów, czyli -268,65 stopnia Celsjusza. Poprzedni rekord, 13,8 tesli, został osiągnięty przed 11 laty w Lawrence Berkeley National Laboratory.

Future particle colliders will need strong magnets to steer high-energy particle beams as they travel close to the speed of light on their circular path. A group at Fermilab has achieved a record field strength of 14.1 teslas for a particle accelerator steering magnet, breaking the 11-year record.

Superconducting magnets are the workhorses that steer particle beams in most particle accelerators. The problem is that these magnets require costly cryogens to cool. Now, researchers have found a way to create high-temperature superconducting magnets. A group at Fermilab proposed a novel magnet design that works at much higher temperatures. It could substantially simplify magnet fabrication and cooling.