Muon g-2

From Scientific American, October 2022: For several decades after the invention of the Standard Model, several physics measurements suggest that novel particles and forces exist in the universe. This article was originally published and titled, “When Particles Break the Rules” and includes the combined results from the Fermilab g-2 experiment and the previous trial at Brookhaven that add up to a probability of less than 0.01 percent that this anomaly is a statistical fluke.

From Brookhaven National Laboratory, October 11, 2022: Brookhaven National Lab announced yesterday that two of their scientists who led the “E821 g-2” experiment at BNL from 1990 through 2004 received the APS’s 2023 W.K.H. Panofsky Prize in Experimental Particle Physics. William M. Morse and Bradley Lee Roberts received the honor for their leadership and technical ingenuity in achieving a measurement of the muon anomalous magnetic moment with a precision suitable to probe Standard Model.

From Prospect, August 29, 2022: The LHC is back running now colliding more intense beams, generating more collisions and collecting more data to sift. Fermilab’s Muon g-2 results offered an intriguing hint about muons that the LHC can follow up on by looking for new particles directly and the behavior it should induce in particles we know about.

From Medium.com, July 21, 2022: An interview with Fermilab’s artist-in-residence, Mare Hirsch on her creative journey studying music and work in computational fabrication while collaborating with scientists to create data-driven art. Hirsch is now working with Muon g-2 scientists to visually represent aspects of particle physics such as muon precessions and virtual particles.

From the Department of Energy Office of Science, July 13, 2022: DOE announced $78 million in funding for 58 research projects that will spur new discoveries in high energy physics. The announcement covers a wide range of topics at the frontiers of particle physics, including Fermilab’s Muon g-2 and the MicroBooNE experiments.

From The Conversation, May 6, 2021: A recent series of precise measurements in the LHCb, Muon g-2 and CDF experiments have threatened to shake up physics. Now, the LHC is gearing up to run at higher energy and intensity than ever before to make very precise measurements that will test the predictions of theories by looking for deviations from the Standard Model.

From The Hamden Journal, January 16, 2022: With the Standard Model explaining the fundamental physics of how the universe works, experimental physicists are constantly probing for cracks in the model’s foundations. So far, it has remained the model of fundamental physics despite many experiments in 2021 that probed the Standard Model 2021 like Muon g-2.