From Forbes, April 1, 2021: Don Lincoln explains one of the biggest mysteries of modern physics is the question of why we don’t see as much antimatter in the universe as ordinary matter. Scientists working at the CERN laboratory have announced that they have used lasers to slow the motion of antimatter, resulting in unprecedented capabilities to its properties.

Public lecture by Dr. Gerald Gabrielse

Our universe is made of matter. Yet the Big Bang produced essentially equal amounts of matter and antimatter according to our most fundamental understanding of the building blocks of nature. The inability of our fundamental theory to describe this basic feature of our universe is the great frustration of modern physics. In this one-hour lecture, held on Feb. 19, 2021, Dr. Gerald Gabrielse, Northwestern University, gives an introduction to antimatter and matter, explains the theoretical framework that explains particle interactions, and gives examples of attempts to solve the mystery of antimatter.

From Forbes, Feb. 17, 2021: Fermilab scientist Don Lincoln contextualizes the accomplishment of researchers working at the Japan Proton Accelerator Research Complex, or J-PARC. They have made an atomic nucleus that contains an unstable particle called the hyperon, or cascade particle. This could help in understanding neutron stars.

Carbon is necessary for all life. If the element carbon did not exist, scientists believe the universe would be sterile, no life anywhere. Among more than a hundred different chemical elements, only carbon has the atomic structure, with six electrons surrounding a nucleus with six protons, necessary to serve as the basis for such complex organisms. We take carbon for granted, but it is miraculous that it exists.

“Why there is something, rather than nothing?” is a timeless question in both science and philosophy. In this video, Fermilab scientist Don Lincoln explains the theory of leptogenesis, which might be the answer. The international Deep Underground Neutrino Experiment, hosted by Fermilab, will test this idea.

If there’s one thing that we think we understand, it’s matter. However, all is not as it seems. Over the last century, scientists have learned that matter is very different from the way we traditionally think about it.