neutrino

From Quanta Magazine, Nov. 13, 2019: Fermilab physicist Stephen Parke, University of Chicago physicist Xining Zhang and Brookhaven National Laboratory physicist Peter Denton wanted to calculate how neutrinos change. They ended up discovering an unexpected relationship between some of the most ubiquitous objects in math.

With a ceremony held today, Fermilab joined with its international partners to break ground on a new beamline that will help scientists learn more about ghostly particles called neutrinos. The beamline is part of the Long-Baseline Neutrino Facility, which will house the Deep Underground Neutrino Experiment, an international endeavor to build and operate the world’s most advanced experiment to study neutrinos.

The Deep Underground Neutrino Experiment will tackle some of the biggest mysteries in physics — and to do so, it will need the most intense high-energy beam of neutrinos ever created. Engineers are up to the complicated task, which will need extreme versions of some common-sounding ingredients: magnets and pencil lead.

Fermilab’s NOvA neutrino experiment records in its giant particle detector the passage of slippery particles called neutrinos and their antimatter counterparts, antineutrinos. Famously elusive, these particles’ interactions are challenging to capture, requiring the steady accumulation of interaction data to be able to pin down their characteristics. With five years’ worth of data, NOvA is adding to scientists’ understanding of neutrinos’ mass and oscillation behavior.

Kirsty Duffy, a Lederman fellow at Fermilab, says neutrinos are the most interesting particles in the universe. As a recipient of the Leona Woods Distinguished Postdoctoral Lectureship Award, she’ll have a chance to make her case in two talks she’ll deliver at the Brookhaven National Laboratory this November.

Advances in subatomic physics heavily depend on ingenuity and technology. And when it comes to discovering the nature of some of the most elusive particles in the universe, neutrinos, scientists need the best and most sensitive detector technology possible. Scientists working at CERN have started tests of a new neutrino detector prototype, using a very promising technology called “dual phase.”

From Rapid City Journal, Oct. 9, 2019: For the past 17 years, shovels, safety goggles, tramway cars and other remains of the defunct Homestake gold mine lingered in a closed-off tunnel under the city of Lead, South Dakota. Now the tunnel is alive with activity again, thanks to preparations for the Long-Baseline Neutrino Facility and the international Deep Underground Neutrino Experiment, hosted by Fermilab.

From CNRS, Oct. 10, 2019: Les scientifiques de la collaboration ProtoDUNE au CERN ont commencé à tester un tout nouveau prototype de détecteur de neutrinos, en utilisant une technologie très prometteuse, appelée “double phase.” Si les premiers résultats obtenus se confirment, cette nouvelle technologie sera utilisée à une plus grande échelle pour l’expérience internationale DUNE aux États-Unis. Les scientifiques français du CNRS et du CEA jouent un rôle de premier plan dans le développement et la mise en route de ce détecteur innovant.